Package org.biojava.nbio.structure.jama
Class EigenvalueDecomposition
java.lang.Object
org.biojava.nbio.structure.jama.EigenvalueDecomposition
- All Implemented Interfaces:
- Serializable
Eigenvalues and eigenvectors of a real matrix.
If A is symmetric, then A = V*D*V' where the eigenvalue matrix D is diagonal and the eigenvector matrix V is orthogonal. I.e. A = V.times(D.times(V.transpose())) and V.times(V.transpose()) equals the identity matrix.
If A is not symmetric, then the eigenvalue matrix D is block diagonal with the real eigenvalues in 1-by-1 blocks and any complex eigenvalues, lambda + i*mu, in 2-by-2 blocks, [lambda, mu; -mu, lambda]. The columns of V represent the eigenvectors in the sense that A*V = V*D, i.e. A.times(V) equals V.times(D). The matrix V may be badly conditioned, or even singular, so the validity of the equation A = V*D*inverse(V) depends upon V.cond().
- See Also:
- 
Constructor SummaryConstructorsConstructorDescriptionCheck for symmetry, then construct the eigenvalue decomposition Structure to access D and V.
- 
Method Summary
- 
Constructor Details- 
EigenvalueDecompositionCheck for symmetry, then construct the eigenvalue decomposition Structure to access D and V.- Parameters:
- Arg- Square matrix
 
 
- 
- 
Method Details- 
getVReturn the eigenvector matrix- Returns:
- V
 
- 
getRealEigenvaluesReturn the real parts of the eigenvalues- Returns:
- real(diag(D))
 
- 
getImagEigenvaluesReturn the imaginary parts of the eigenvalues- Returns:
- imag(diag(D))
 
- 
getDReturn the block diagonal eigenvalue matrix- Returns:
- D
 
 
-