001/* 002 * BioJava development code 003 * 004 * This code may be freely distributed and modified under the 005 * terms of the GNU Lesser General Public Licence. This should 006 * be distributed with the code. If you do not have a copy, 007 * see: 008 * 009 * http://www.gnu.org/copyleft/lesser.html 010 * 011 * Copyright for this code is held jointly by the individual 012 * authors. These should be listed in @author doc comments. 013 * 014 * For more information on the BioJava project and its aims, 015 * or to join the biojava-l mailing list, visit the home page 016 * at: 017 * 018 * http://www.biojava.org/ 019 * 020 */ 021 022package org.biojava.bio.dist; 023 024import org.biojava.bio.symbol.FiniteAlphabet; 025 026/** 027 * A distribution which does not interact with the training framework. 028 * This class behaves in exactly the same manner as SimpleDistribution, 029 * except that it has a no-op <code>registerWithTrainer</code> method. 030 * It is useful for building Markov models where you wish to train only 031 * a subset of the Distributions. 032 * 033 * @author Thomas Down 034 * @since 1.3 035 */ 036 037public class UntrainableDistribution extends SimpleDistribution { 038 /** 039 * Construct a new untrainable distribution over the specified alphabet. 040 * 041 * @param alpha the finite alphabet to be over 042 */ 043 public UntrainableDistribution(FiniteAlphabet alpha) { 044 super(alpha); 045 } 046 047 public void registerWithTrainer(DistributionTrainerContext dtc) { 048 dtc.registerTrainer(this, IgnoreCountsTrainer.getInstance()); 049 } 050}