001/*
002 *                  BioJava development code
003 *
004 * This code may be freely distributed and modified under the
005 * terms of the GNU Lesser General Public Licence.  This should
006 * be distributed with the code.  If you do not have a copy,
007 * see:
008 *
009 *      http://www.gnu.org/copyleft/lesser.html
010 *
011 * Copyright for this code is held jointly by the individual
012 * authors.  These should be listed in @author doc comments.
013 *
014 * For more information on the BioJava project and its aims,
015 * or to join the biojava-l mailing list, visit the home page
016 * at:
017 *
018 *      http://www.biojava.org/
019 *
020 * Created on Jan 4, 2006
021 *
022 */
023package org.biojava.nbio.structure;
024
025import java.io.File;
026import java.io.FileInputStream;
027import java.io.IOException;
028import java.io.InputStream;
029import java.util.ArrayList;
030import java.util.Collection;
031import java.util.Collections;
032import java.util.HashMap;
033import java.util.HashSet;
034import java.util.Iterator;
035import java.util.LinkedHashSet;
036import java.util.List;
037import java.util.Map;
038import java.util.Set;
039
040import javax.vecmath.Point3d;
041
042import org.biojava.nbio.structure.align.util.AtomCache;
043import org.biojava.nbio.structure.contact.AtomContactSet;
044import org.biojava.nbio.structure.contact.Grid;
045import org.biojava.nbio.structure.io.FileParsingParameters;
046import org.biojava.nbio.structure.io.PDBFileParser;
047import org.biojava.nbio.core.util.FileDownloadUtils;
048import org.slf4j.Logger;
049import org.slf4j.LoggerFactory;
050
051/**
052 * A class that provides some tool methods.
053 *
054 * @author Andreas Prlic
055 * @author Jules Jacobsen
056 * @since 1.0
057 */
058public class StructureTools {
059
060        private static final Logger logger = LoggerFactory
061                        .getLogger(StructureTools.class);
062
063        // Amino Acid backbone
064        /**
065         * The atom name of the backbone C-alpha atom. Note that this can be
066         * ambiguous depending on the context since Calcium atoms use the same name
067         * in PDB.
068         */
069        public static final String CA_ATOM_NAME = "CA";
070
071        /**
072         * The atom name for the backbone amide nitrogen
073         */
074        public static final String N_ATOM_NAME = "N";
075
076        /**
077         * The atom name for the backbone carbonyl
078         */
079        public static final String C_ATOM_NAME = "C";
080
081        /**
082         * The atom name for the backbone carbonyl oxygen
083         */
084        public static final String O_ATOM_NAME = "O";
085
086        /**
087         * The atom name of the side-chain C-beta atom
088         */
089        public static final String CB_ATOM_NAME = "CB";
090
091        // Nucleotide backbone
092        /**
093         * The atom name of the backbone C1' in RNA
094         */
095        public static final String C1_ATOM_NAME = "C1'";
096        /**
097         * The atom name of the backbone C2' in RNA
098         */
099        public static final String C2_ATOM_NAME = "C2'";
100        /**
101         * The atom name of the backbone C3' in RNA
102         */
103        public static final String C3_ATOM_NAME = "C3'";
104        /**
105         * The atom name of the backbone C4' in RNA
106         */
107        public static final String C4_ATOM_NAME = "C4'";
108        /**
109         * The atom name of the backbone O2' in RNA
110         */
111        public static final String O2_ATOM_NAME = "O2'";
112        /**
113         * The atom name of the backbone O3' in RNA
114         */
115        public static final String O3_ATOM_NAME = "O3'";
116        /**
117         * The atom name of the backbone O4' in RNA
118         */
119        public static final String O4_ATOM_NAME = "O4'";
120        /**
121         * The atom name of the backbone O4' in RNA
122         */
123        public static final String O5_ATOM_NAME = "O5'";
124        /**
125         * The atom name of the backbone O4' in RNA
126         */
127        public static final String OP1_ATOM_NAME = "OP1";
128        /**
129         * The atom name of the backbone O4' in RNA
130         */
131        public static final String OP2_ATOM_NAME = "OP2";
132        /**
133         * The atom name of the backbone phosphate in RNA
134         */
135        public static final String P_ATOM_NAME = "P";
136
137        /**
138         * The atom used as representative for nucleotides, equivalent to
139         * {@link #CA_ATOM_NAME} for proteins
140         */
141        public static final String NUCLEOTIDE_REPRESENTATIVE = P_ATOM_NAME;
142
143        /**
144         * The character to use for unknown compounds in sequence strings
145         */
146        public static final char UNKNOWN_GROUP_LABEL = 'X';
147
148        /**
149         * Below this ratio of aminoacid/nucleotide residues to the sequence total,
150         * we use simple majority of aminoacid/nucleotide residues to decide the
151         * character of the chain (protein/nucleotide)
152         */
153        public static final double RATIO_RESIDUES_TO_TOTAL = 0.95;
154
155        /**
156         * Threshold for plausible binding of a ligand to the selected substructure
157         */
158        public static final double DEFAULT_LIGAND_PROXIMITY_CUTOFF = 5;
159
160        // there is a file format change in PDB 3.0 and nucleotides are being
161        // renamed
162        private static final Map<String, Character> nucleotides30;
163        private static final Map<String, Character> nucleotides23;
164
165        // amino acid 3 and 1 letter code definitions
166        private static final Map<String, Character> aminoAcids;
167
168        private static final Set<Element> hBondDonorAcceptors;
169
170        static {
171                nucleotides30 = new HashMap<String, Character>();
172                nucleotides30.put("DA", 'A');
173                nucleotides30.put("DC", 'C');
174                nucleotides30.put("DG", 'G');
175                nucleotides30.put("DT", 'T');
176                nucleotides30.put("DI", 'I');
177                nucleotides30.put("A", 'A');
178                nucleotides30.put("G", 'G');
179                nucleotides30.put("C", 'C');
180                nucleotides30.put("U", 'U');
181                nucleotides30.put("I", 'I');
182
183                // the DNA linkers - the +C , +G, +A +T +U and +I have been replaced
184                // with these:
185                nucleotides30.put("TAF", UNKNOWN_GROUP_LABEL); // Fluorinated Thymine
186                nucleotides30.put("TC1", UNKNOWN_GROUP_LABEL); // Furanosyl
187                nucleotides30.put("TFE", UNKNOWN_GROUP_LABEL); // Fluorinated Thymine
188                nucleotides30.put("TFO", UNKNOWN_GROUP_LABEL); // Tenofovir (3'
189                // terminator)
190                nucleotides30.put("TGP", UNKNOWN_GROUP_LABEL); // Guanine variant
191                nucleotides30.put("THX", UNKNOWN_GROUP_LABEL); // 5' terminator
192                nucleotides30.put("TLC", UNKNOWN_GROUP_LABEL); // Thymine with dicyclic
193                // sugar
194                nucleotides30.put("TLN", UNKNOWN_GROUP_LABEL); // locked Thymine
195                nucleotides30.put("LCG", UNKNOWN_GROUP_LABEL); // locked Guanine
196                nucleotides30.put("TP1", UNKNOWN_GROUP_LABEL); // Thymine peptide
197                // nucleic acid, with
198                // added methyl
199                nucleotides30.put("CP1", UNKNOWN_GROUP_LABEL); // Cytidine peptide
200                // nucleic acid, with
201                // added methyl
202                nucleotides30.put("TPN", UNKNOWN_GROUP_LABEL); // Thymine peptide
203                // nucleic acid
204                nucleotides30.put("CPN", UNKNOWN_GROUP_LABEL); // Cytidine peptide
205                // nucleic acid
206                nucleotides30.put("GPN", UNKNOWN_GROUP_LABEL); // Guanine peptide
207                // nucleic acid
208                nucleotides30.put("APN", UNKNOWN_GROUP_LABEL); // Adenosine peptide
209                // nucleic acid
210                nucleotides30.put("TPC", UNKNOWN_GROUP_LABEL); // Thymine variant
211
212                // store nucleic acids (C, G, A, T, U, and I), and
213                // the modified versions of nucleic acids (+C, +G, +A, +T, +U, and +I),
214                // and
215                nucleotides23 = new HashMap<String, Character>();
216                String[] names = { "C", "G", "A", "T", "U", "I", "+C", "+G", "+A",
217                                "+T", "+U", "+I" };
218                for (String n : names) {
219                        nucleotides23.put(n, n.charAt(n.length() - 1));
220                }
221
222                aminoAcids = new HashMap<String, Character>();
223                aminoAcids.put("GLY", 'G');
224                aminoAcids.put("ALA", 'A');
225                aminoAcids.put("VAL", 'V');
226                aminoAcids.put("LEU", 'L');
227                aminoAcids.put("ILE", 'I');
228                aminoAcids.put("PHE", 'F');
229                aminoAcids.put("TYR", 'Y');
230                aminoAcids.put("TRP", 'W');
231                aminoAcids.put("PRO", 'P');
232                aminoAcids.put("HIS", 'H');
233                aminoAcids.put("LYS", 'K');
234                aminoAcids.put("ARG", 'R');
235                aminoAcids.put("SER", 'S');
236                aminoAcids.put("THR", 'T');
237                aminoAcids.put("GLU", 'E');
238                aminoAcids.put("GLN", 'Q');
239                aminoAcids.put("ASP", 'D');
240                aminoAcids.put("ASN", 'N');
241                aminoAcids.put("CYS", 'C');
242                aminoAcids.put("MET", 'M');
243                // MSE is only found as a molecular replacement for MET
244                aminoAcids.put("MSE", 'M');
245                // 'non-standard', genetically encoded
246                // http://www.chem.qmul.ac.uk/iubmb/newsletter/1999/item3.html
247                // IUBMB recommended name is 'SEC' but the wwPDB currently use 'CSE'
248                // likewise 'PYL' (IUBMB) and 'PYH' (PDB)
249                aminoAcids.put("CSE", 'U');
250                aminoAcids.put("SEC", 'U');
251                aminoAcids.put("PYH", 'O');
252                aminoAcids.put("PYL", 'O');
253
254                hBondDonorAcceptors = new HashSet<Element>();
255                hBondDonorAcceptors.add(Element.N);
256                hBondDonorAcceptors.add(Element.O);
257                hBondDonorAcceptors.add(Element.S);
258
259        }
260
261        /**
262         * Count how many Atoms are contained within a Structure object.
263         *
264         * @param s
265         *            the structure object
266         * @return the number of Atoms in this Structure
267         */
268        public static final int getNrAtoms(Structure s) {
269
270                int nrAtoms = 0;
271
272                Iterator<Group> iter = new GroupIterator(s);
273
274                while (iter.hasNext()) {
275                        Group g = iter.next();
276                        nrAtoms += g.size();
277                }
278
279                return nrAtoms;
280        }
281
282        /**
283         * Count how many groups are contained within a structure object.
284         *
285         * @param s
286         *            the structure object
287         * @return the number of groups in the structure
288         */
289        public static final int getNrGroups(Structure s) {
290                int nrGroups = 0;
291
292                List<Chain> chains = s.getChains(0);
293                for (Chain c : chains) {
294                        nrGroups += c.getAtomLength();
295                }
296                return nrGroups;
297        }
298
299        /**
300         * Returns an array of the requested Atoms from the Structure object.
301         * Iterates over all groups and checks if the requested atoms are in this
302         * group, no matter if this is a {@link AminoAcid} or {@link HetatomImpl}
303         * group. If the group does not contain all requested atoms then no atoms
304         * are added for that group. For structures with more than one model, only
305         * model 0 will be used.
306         *
307         * @param s
308         *            the structure to get the atoms from
309         *
310         * @param atomNames
311         *            contains the atom names to be used.
312         * @return an Atom[] array
313         */
314        public static final Atom[] getAtomArray(Structure s, String[] atomNames) {
315                List<Chain> chains = s.getModel(0);
316
317                List<Atom> atoms = new ArrayList<Atom>();
318
319                extractAtoms(atomNames, chains, atoms);
320                return atoms.toArray(new Atom[atoms.size()]);
321
322        }
323
324        /**
325         * Returns an array of the requested Atoms from the Structure object. In
326         * contrast to {@link #getAtomArray(Structure, String[])} this method
327         * iterates over all chains. Iterates over all chains and groups and checks
328         * if the requested atoms are in this group, no matter if this is a
329         * {@link AminoAcid} or {@link HetatomImpl} group. If the group does not
330         * contain all requested atoms then no atoms are added for that group. For
331         * structures with more than one model, only model 0 will be used.
332         *
333         * @param s
334         *            the structure to get the atoms from
335         *
336         * @param atomNames
337         *            contains the atom names to be used.
338         * @return an Atom[] array
339         */
340        public static final Atom[] getAtomArrayAllModels(Structure s,
341                        String[] atomNames) {
342
343                List<Atom> atoms = new ArrayList<Atom>();
344
345                for (int i = 0; i < s.nrModels(); i++) {
346                        List<Chain> chains = s.getModel(i);
347                        extractAtoms(atomNames, chains, atoms);
348                }
349                return atoms.toArray(new Atom[atoms.size()]);
350
351        }
352
353        /**
354         * Convert all atoms of the structure (all models) into an Atom array
355         *
356         * @param s
357         *            input structure
358         * @return all atom array
359         */
360        public static final Atom[] getAllAtomArray(Structure s) {
361                List<Atom> atoms = new ArrayList<Atom>();
362
363                AtomIterator iter = new AtomIterator(s);
364                while (iter.hasNext()) {
365                        Atom a = iter.next();
366                        atoms.add(a);
367                }
368                return atoms.toArray(new Atom[atoms.size()]);
369        }
370        /**
371         * Convert all atoms of the structure (specified model) into an Atom array
372         *
373         * @param s
374         *            input structure
375         * @return all atom array
376         */
377        public static final Atom[] getAllAtomArray(Structure s, int model) {
378                List<Atom> atoms = new ArrayList<Atom>();
379
380                AtomIterator iter = new AtomIterator(s,model);
381                while (iter.hasNext()) {
382                        Atom a = iter.next();
383                        atoms.add(a);
384                }
385                return atoms.toArray(new Atom[atoms.size()]);
386
387        }
388
389        /**
390         * Returns and array of all atoms of the chain, including
391         * Hydrogens (if present) and all HETATOMs. Waters are not included.
392         *
393         * @param c
394         *            input chain
395         * @return all atom array
396         */
397        public static final Atom[] getAllAtomArray(Chain c) {
398                List<Atom> atoms = new ArrayList<Atom>();
399
400                for (Group g : c.getAtomGroups()) {
401                        if (g.isWater())
402                                continue;
403                        for (Atom a : g.getAtoms()) {
404                                atoms.add(a);
405                        }
406                }
407                return atoms.toArray(new Atom[atoms.size()]);
408        }
409
410        /**
411         * List of groups from the structure not included in ca (e.g. ligands).
412         *
413         * Unaligned groups are searched from all chains referenced in ca, as well
414         * as any chains in the first model of the structure from ca[0], if any.
415         *
416         * @param ca an array of atoms
417         * @return
418         */
419        public static List<Group> getUnalignedGroups(Atom[] ca) {
420                Set<Chain> chains = new HashSet<Chain>();
421                Set<Group> caGroups = new HashSet<Group>();
422
423                // Create list of all chains in this structure
424                Structure s = null;
425                if (ca.length > 0) {
426                        Group g = ca[0].getGroup();
427                        if (g != null) {
428                                Chain c = g.getChain();
429                                if (c != null) {
430                                        s = c.getStructure();
431                                }
432                        }
433                }
434                if (s != null) {
435                        // Add all chains from the structure
436                        for (Chain c : s.getChains(0)) {
437                                chains.add(c);
438                        }
439                }
440
441                // Add groups and chains from ca
442                for (Atom a : ca) {
443                        Group g = a.getGroup();
444                        if (g != null) {
445                                caGroups.add(g);
446
447                                Chain c = g.getChain();
448                                if (c != null) {
449                                        chains.add(c);
450                                }
451                        }
452                }
453
454                // Iterate through all chains, finding groups not in ca
455                List<Group> unadded = new ArrayList<Group>();
456                for (Chain c : chains) {
457                        for (Group g : c.getAtomGroups()) {
458                                if (!caGroups.contains(g)) {
459                                        unadded.add(g);
460                                }
461                        }
462                }
463                return unadded;
464        }
465
466        /**
467         * Finds all ligand groups from the target which fall within the cutoff distance
468         * of some atom from the query set.
469         * 
470         * @param target Set of groups including the ligands
471         * @param query Atom selection
472         * @param cutoff Distance from query atoms to consider, in angstroms
473         * @return All groups from the target with at least one atom within cutoff of a query atom
474         * @see StructureTools#DEFAULT_LIGAND_PROXIMITY_CUTOFF
475         */
476        public static List<Group> getLigandsByProximity(Collection<Group> target, Atom[] query, double cutoff) {
477                // Geometric hashing of the reduced structure
478                Grid grid = new Grid(cutoff);
479                grid.addAtoms(query);
480
481                List<Group> ligands = new ArrayList<>();
482                for(Group g :target ) {
483                        // don't worry about waters
484                        if(g.isWater()) {
485                                continue;
486                        }
487
488                        if(g.isPolymeric() ) {
489                                // Polymers aren't ligands
490                                continue;
491                        }
492
493                        // It is a ligand!
494
495                        // Check that it's within cutoff of something in reduced
496                        List<Atom> groupAtoms = g.getAtoms();
497                        if( ! grid.hasAnyContact(Calc.atomsToPoints(groupAtoms))) {
498                                continue;
499                        }
500
501                        ligands.add(g);
502                }
503                return ligands;
504        }
505        
506        /**
507         * Adds a particular group to a structure. A new chain will be created if necessary.
508         * 
509         * <p>When adding multiple groups, pass the return value of one call as the
510         * chainGuess parameter of the next call for efficiency.
511         * <pre>
512         * Chain guess = null;
513         * for(Group g : groups) {
514         *     guess = addGroupToStructure(s, g, guess );
515         * }
516         * </pre>
517         * @param s structure to receive the group
518         * @param g group to add
519         * @param chainGuess (optional) If not null, should be a chain from s. Used
520         *  to improve performance when adding many groups from the same chain
521         * @param clone Indicates whether the input group should be cloned before
522         *  being added to the new chain
523         * @return the chain g was added to
524         */
525        public static Chain addGroupToStructure(Structure s, Group g, int model, Chain chainGuess, boolean clone ) {
526                synchronized(s) {
527                        // Find or create the chain
528                        String chainId = g.getChainId();
529                        assert !chainId.isEmpty();
530                        Chain chain;
531                        if(chainGuess != null && chainGuess.getId() == chainId) {
532                                // previously guessed chain
533                                chain = chainGuess;
534                        } else {
535                                // Try to guess
536                                chain = s.getChain(chainId, model);
537                                if(chain == null) {
538                                        // no chain found
539                                        chain = new ChainImpl();
540                                        chain.setId(chainId);
541
542                                        Chain oldChain = g.getChain();
543                                        chain.setName(oldChain.getName());
544
545                                        EntityInfo oldEntityInfo = oldChain.getEntityInfo();
546
547                                        EntityInfo newEntityInfo = s.getEntityById(oldEntityInfo.getMolId());
548                                        if( newEntityInfo == null ) {
549                                                newEntityInfo = new EntityInfo(oldEntityInfo);
550                                                s.addEntityInfo(newEntityInfo);
551                                        }
552                                        newEntityInfo.addChain(chain);
553                                        chain.setEntityInfo(newEntityInfo);
554                                        
555                                        // TODO Do the seqres need to be cloned too? -SB 2016-10-7
556                                        chain.setSeqResGroups(oldChain.getSeqResGroups());
557                                        chain.setSeqMisMatches(oldChain.getSeqMisMatches());
558                                        
559                                        s.addChain(chain,model);
560                                }
561                        }
562
563                        // Add cloned group
564                        if(clone) {
565                                g = (Group)g.clone();
566                        }
567                        chain.addGroup(g);
568
569                        return chain;
570                }
571        }
572
573        /**
574         * Add a list of groups to a new structure. Chains will be automatically
575         * created in the new structure as needed.
576         * @param s structure to receive the group
577         * @param g group to add
578         * @param clone Indicates whether the input groups should be cloned before
579         *  being added to the new chain
580         */
581        public static void addGroupsToStructure(Structure s, Collection<Group> groups, int model, boolean clone) {
582                Chain chainGuess = null;
583                for(Group g : groups) {
584                        chainGuess = addGroupToStructure(s, g, model, chainGuess, clone);
585                }
586        }
587        
588        /**
589         * Expand a set of atoms into all groups from the same structure.
590         * 
591         * If the structure is set, only the first atom is used (assuming all
592         * atoms come from the same original structure).
593         * If the atoms aren't linked to a structure (for instance, for cloned atoms),
594         * searches all chains of all atoms for groups.
595         * @param atoms Sample of atoms
596         * @return All groups from all chains accessible from the input atoms
597         */
598        public static Set<Group> getAllGroupsFromSubset(Atom[] atoms) {
599                return getAllGroupsFromSubset(atoms,null);
600        }
601        /**
602         * Expand a set of atoms into all groups from the same structure.
603         * 
604         * If the structure is set, only the first atom is used (assuming all
605         * atoms come from the same original structure).
606         * If the atoms aren't linked to a structure (for instance, for cloned atoms),
607         * searches all chains of all atoms for groups.
608         * @param atoms Sample of atoms
609         * @param types Type of groups to return (useful for getting only ligands, for instance).
610         *  Null gets all groups.
611         * @return All groups from all chains accessible from the input atoms
612         */
613        public static Set<Group> getAllGroupsFromSubset(Atom[] atoms,GroupType types) {
614                // Get the full structure
615                Structure s = null;
616                if (atoms.length > 0) {
617                        Group g = atoms[0].getGroup();
618                        if (g != null) {
619                                Chain c = g.getChain();
620                                if (c != null) {
621                                        s = c.getStructure();
622                                }
623                        }
624                }
625                // Collect all groups from the structure
626                Set<Chain> allChains = new HashSet<>();
627                if( s != null ) {
628                        allChains.addAll(s.getChains());
629                }
630                // In case the structure wasn't set, need to use ca chains too
631                for(Atom a : atoms) {
632                        Group g = a.getGroup();
633                        if(g != null) {
634                                Chain c = g.getChain();
635                                if( c != null ) {
636                                        allChains.add(c);
637                                }
638                        }
639                }
640
641                if(allChains.isEmpty() ) {
642                        return Collections.emptySet();
643                }
644                
645                // Extract all ligand groups
646                Set<Group> full = new HashSet<>();
647                for(Chain c : allChains) {
648                        if(types == null) {
649                                full.addAll(c.getAtomGroups());
650                        } else {
651                                full.addAll(c.getAtomGroups(types));
652                        }
653                }
654
655                return full;
656        }
657
658
659        /**
660         * Returns and array of all non-Hydrogen atoms in the given Structure,
661         * optionally including HET atoms or not. Waters are not included.
662         *
663         * @param s
664         * @param hetAtoms
665         *            if true HET atoms are included in array, if false they are not
666         * @return
667         */
668        public static final Atom[] getAllNonHAtomArray(Structure s, boolean hetAtoms) {
669                AtomIterator iter = new AtomIterator(s);
670                return getAllNonHAtomArray(s, hetAtoms, iter);
671        }
672        /**
673         * Returns and array of all non-Hydrogen atoms in the given Structure,
674         * optionally including HET atoms or not. Waters are not included.
675         *
676         * @param s
677         * @param hetAtoms
678         *            if true HET atoms are included in array, if false they are not
679         * @param modelNr Model number to draw atoms from
680         * @return
681         */
682        public static final Atom[] getAllNonHAtomArray(Structure s, boolean hetAtoms, int modelNr) {
683                AtomIterator iter = new AtomIterator(s,modelNr);
684                return getAllNonHAtomArray(s, hetAtoms, iter);
685        }
686        private static final Atom[] getAllNonHAtomArray(Structure s, boolean hetAtoms, AtomIterator iter) {
687                List<Atom> atoms = new ArrayList<Atom>();
688
689                while (iter.hasNext()) {
690                        Atom a = iter.next();
691                        if (a.getElement() == Element.H)
692                                continue;
693
694                        Group g = a.getGroup();
695
696                        if (g.isWater())
697                                continue;
698
699                        if (!hetAtoms && g.getType().equals(GroupType.HETATM))
700                                continue;
701
702                        atoms.add(a);
703                }
704                return atoms.toArray(new Atom[atoms.size()]);
705        }
706
707        /**
708         * Returns and array of all non-Hydrogen atoms in the given Chain,
709         * optionally including HET atoms or not Waters are not included.
710         *
711         * @param c
712         * @param hetAtoms
713         *            if true HET atoms are included in array, if false they are not
714         * @return
715         */
716        public static final Atom[] getAllNonHAtomArray(Chain c, boolean hetAtoms) {
717                List<Atom> atoms = new ArrayList<Atom>();
718
719                for (Group g : c.getAtomGroups()) {
720                        if (g.isWater())
721                                continue;
722                        for (Atom a : g.getAtoms()) {
723
724                                if (a.getElement() == Element.H)
725                                        continue;
726
727                                if (!hetAtoms && g.getType().equals(GroupType.HETATM))
728                                        continue;
729
730                                atoms.add(a);
731                        }
732                }
733                return atoms.toArray(new Atom[atoms.size()]);
734        }
735        
736        /**
737         * Returns and array of all non-Hydrogen atoms coordinates in the given Chain,
738         * optionally including HET atoms or not Waters are not included.
739         *
740         * @param c
741         * @param hetAtoms
742         *            if true HET atoms are included in array, if false they are not
743         * @return
744         */
745        public static final Point3d[] getAllNonHCoordsArray(Chain c, boolean hetAtoms) {
746                List<Point3d> atoms = new ArrayList<Point3d>();
747
748                for (Group g : c.getAtomGroups()) {
749                        if (g.isWater())
750                                continue;
751                        for (Atom a : g.getAtoms()) {
752
753                                if (a.getElement() == Element.H)
754                                        continue;
755
756                                if (!hetAtoms && g.getType().equals(GroupType.HETATM))
757                                        continue;
758
759                                atoms.add(a.getCoordsAsPoint3d());
760                        }
761                }
762                return atoms.toArray(new Point3d[atoms.size()]);
763        }
764
765        /**
766         * Adds to the given atoms list, all atoms of groups that contained all
767         * requested atomNames, i.e. if a group does not contain all of the
768         * requested atom names, its atoms won't be added.
769         *
770         * @param atomNames
771         * @param chains
772         * @param atoms
773         */
774        private static void extractAtoms(String[] atomNames, List<Chain> chains,
775                        List<Atom> atoms) {
776
777                for (Chain c : chains) {
778
779                        for (Group g : c.getAtomGroups()) {
780
781                                // a temp container for the atoms of this group
782                                List<Atom> thisGroupAtoms = new ArrayList<Atom>();
783                                // flag to check if this group contains all the requested atoms.
784                                boolean thisGroupAllAtoms = true;
785                                for (String atomName : atomNames) {
786                                        Atom a = g.getAtom(atomName);
787
788                                        if (a == null) {
789                                                // this group does not have a required atom, skip it...
790                                                thisGroupAllAtoms = false;
791                                                break;
792                                        }
793                                        thisGroupAtoms.add(a);
794                                }
795                                if (thisGroupAllAtoms) {
796                                        // add the atoms of this group to the array.
797                                        for (Atom a : thisGroupAtoms) {
798                                                atoms.add(a);
799                                        }
800                                }
801
802                        }
803                }
804        }
805
806        /**
807         * Returns an array of the requested Atoms from the Chain object. Iterates
808         * over all groups and checks if the requested atoms are in this group, no
809         * matter if this is a AminoAcid or Hetatom group. If the group does not
810         * contain all requested atoms then no atoms are added for that group.
811         *
812         * @param c
813         *            the Chain to get the atoms from
814         *
815         * @param atomNames
816         *            contains the atom names to be used.
817         * @return an Atom[] array
818         */
819        public static final Atom[] getAtomArray(Chain c, String[] atomNames) {
820
821                List<Atom> atoms = new ArrayList<Atom>();
822
823                for (Group g : c.getAtomGroups()) {
824
825                        // a temp container for the atoms of this group
826                        List<Atom> thisGroupAtoms = new ArrayList<Atom>();
827                        // flag to check if this group contains all the requested atoms.
828                        boolean thisGroupAllAtoms = true;
829                        for (String atomName : atomNames) {
830                                Atom a = g.getAtom(atomName);
831                                if (a == null) {
832                                        logger.debug("Group " + g.getResidueNumber() + " ("
833                                                        + g.getPDBName()
834                                                        + ") does not have the required atom '" + atomName
835                                                        + "'");
836                                        // this group does not have a required atom, skip it...
837                                        thisGroupAllAtoms = false;
838                                        break;
839                                }
840                                thisGroupAtoms.add(a);
841                        }
842
843                        if (thisGroupAllAtoms) {
844                                // add the atoms of this group to the array.
845                                for (Atom a : thisGroupAtoms) {
846                                        atoms.add(a);
847                                }
848                        }
849
850                }
851                return atoms.toArray(new Atom[atoms.size()]);
852
853        }
854
855        /**
856         * Returns an Atom array of the C-alpha atoms. Any atom that is a carbon and
857         * has CA name will be returned.
858         *
859         * @param c
860         *            the structure object
861         * @return an Atom[] array
862         * @see #getRepresentativeAtomArray(Chain)
863         */
864        public static final Atom[] getAtomCAArray(Chain c) {
865                List<Atom> atoms = new ArrayList<Atom>();
866
867                for (Group g : c.getAtomGroups()) {
868                        if (g.hasAtom(CA_ATOM_NAME)
869                                        && g.getAtom(CA_ATOM_NAME).getElement() == Element.C) {
870                                atoms.add(g.getAtom(CA_ATOM_NAME));
871                        }
872                }
873
874                return atoms.toArray(new Atom[atoms.size()]);
875        }
876
877        /**
878         * Gets a representative atom for each group that is part of the chain
879         * backbone. Note that modified aminoacids won't be returned as part of the
880         * backbone if the {@link org.biojava.nbio.structure.io.mmcif.ReducedChemCompProvider} was used to load the
881         * structure.
882         *
883         * For amino acids, the representative is a CA carbon. For nucleotides, the
884         * representative is the {@value #NUCLEOTIDE_REPRESENTATIVE}. Other group
885         * types will be ignored.
886         *
887         * @param c
888         * @return representative Atoms of the chain backbone
889         * @since Biojava 4.1.0
890         */
891        public static final Atom[] getRepresentativeAtomArray(Chain c) {
892                List<Atom> atoms = new ArrayList<Atom>();
893
894                for (Group g : c.getAtomGroups()) {
895
896                        switch (g.getType()) {
897                        case AMINOACID:
898                                if (g.hasAtom(CA_ATOM_NAME)
899                                                && g.getAtom(CA_ATOM_NAME).getElement() == Element.C) {
900                                        atoms.add(g.getAtom(CA_ATOM_NAME));
901                                }
902                                break;
903                        case NUCLEOTIDE:
904                                if (g.hasAtom(NUCLEOTIDE_REPRESENTATIVE)) {
905                                        atoms.add(g.getAtom(NUCLEOTIDE_REPRESENTATIVE));
906                                }
907                                break;
908                        default:
909                                // don't add
910                        }
911                }
912
913                return atoms.toArray(new Atom[atoms.size()]);
914
915        }
916
917        /**
918         * Provides an equivalent copy of Atoms in a new array. Clones everything,
919         * starting with parent groups and chains. The chain will only contain
920         * groups that are part of the input array.
921         *
922         * @param ca
923         *            array of representative atoms, e.g. CA atoms
924         * @return Atom array
925         * @since Biojava 4.1.0
926         */
927        public static final Atom[] cloneAtomArray(Atom[] ca) {
928                Atom[] newCA = new Atom[ca.length];
929
930                List<Chain> model = new ArrayList<Chain>();
931                int apos = -1;
932                for (Atom a : ca) {
933                        apos++;
934                        Group parentG = a.getGroup();
935                        Chain parentC = parentG.getChain();
936
937                        Chain newChain = null;
938                        for (Chain c : model) {
939                                if (c.getName().equals(parentC.getName())) {
940                                        newChain = c;
941                                        break;
942                                }
943                        }
944                        if (newChain == null) {
945                                newChain = new ChainImpl();
946                                newChain.setId(parentC.getId());
947                                newChain.setName(parentC.getName());
948                                model.add(newChain);
949                        }
950
951                        Group parentN = (Group) parentG.clone();
952
953                        newCA[apos] = parentN.getAtom(a.getName());
954                        try {
955                                // if the group doesn't exist yet, this produces a StructureException
956                                newChain.getGroupByPDB(parentN.getResidueNumber());
957                        } catch (StructureException e) {
958                                // the group doesn't exist yet in the newChain, let's add it
959                                newChain.addGroup(parentN);
960                        }
961
962                }
963                return newCA;
964        }
965
966        /**
967         * Clone a set of representative Atoms, but returns the parent groups
968         *
969         * @param ca
970         *            Atom array
971         * @return Group array
972         */
973        public static Group[] cloneGroups(Atom[] ca) {
974                Group[] newGroup = new Group[ca.length];
975
976                List<Chain> model = new ArrayList<Chain>();
977                int apos = -1;
978                for (Atom a : ca) {
979                        apos++;
980                        Group parentG = a.getGroup();
981                        Chain parentC = parentG.getChain();
982
983                        Chain newChain = null;
984                        for (Chain c : model) {
985                                if (c.getName().equals(parentC.getName())) {
986                                        newChain = c;
987                                        break;
988                                }
989                        }
990                        if (newChain == null) {
991                                newChain = new ChainImpl();
992                                newChain.setName(parentC.getName());
993                                model.add(newChain);
994                        }
995
996                        Group ng = (Group) parentG.clone();
997                        newGroup[apos] = ng;
998                        newChain.addGroup(ng);
999                }
1000                return newGroup;
1001        }
1002
1003        /**
1004         * Utility method for working with circular permutations. Creates a
1005         * duplicated and cloned set of Calpha atoms from the input array.
1006         *
1007         * @param ca2
1008         *            atom array
1009         * @return cloned and duplicated set of input array
1010         */
1011        public static Atom[] duplicateCA2(Atom[] ca2) {
1012                // we don't want to rotate input atoms, do we?
1013                Atom[] ca2clone = new Atom[ca2.length * 2];
1014
1015                int pos = 0;
1016
1017                Chain c = null;
1018                String prevChainId = "";
1019                for (Atom a : ca2) {
1020                        Group g = (Group) a.getGroup().clone(); // works because each group
1021                        // has only a single atom
1022
1023                        if (c == null) {
1024                                c = new ChainImpl();
1025                                Chain orig = a.getGroup().getChain();
1026                                c.setId(orig.getId());
1027                                c.setName(orig.getName());
1028                        } else {
1029                                Chain orig = a.getGroup().getChain();
1030                                if (!orig.getId().equals(prevChainId)) {
1031                                        c = new ChainImpl();
1032                                        c.setId(orig.getId());
1033                                        c.setName(orig.getName());
1034                                }
1035                        }
1036
1037                        c.addGroup(g);
1038                        ca2clone[pos] = g.getAtom(a.getName());
1039
1040                        pos++;
1041                }
1042
1043                // Duplicate ca2!
1044                c = null;
1045                prevChainId = "";
1046                for (Atom a : ca2) {
1047                        Group g = (Group) a.getGroup().clone();
1048
1049                        if (c == null) {
1050                                c = new ChainImpl();
1051                                Chain orig = a.getGroup().getChain();
1052                                c.setId(orig.getId());
1053                                c.setName(orig.getName());
1054                        } else {
1055                                Chain orig = a.getGroup().getChain();
1056                                if (!orig.getId().equals(prevChainId)) {
1057                                        c = new ChainImpl();
1058                                        c.setId(orig.getId());
1059                                        c.setName(orig.getName());
1060                                }
1061                        }
1062
1063                        c.addGroup(g);
1064                        ca2clone[pos] = g.getAtom(a.getName());
1065
1066                        pos++;
1067                }
1068
1069                return ca2clone;
1070
1071        }
1072
1073        /**
1074         * Return an Atom array of the C-alpha atoms. Any atom that is a carbon and
1075         * has CA name will be returned.
1076         *
1077         * @param s
1078         *            the structure object
1079         * @return an Atom[] array
1080         * @see #getRepresentativeAtomArray(Structure)
1081         */
1082        public static Atom[] getAtomCAArray(Structure s) {
1083
1084                List<Atom> atoms = new ArrayList<Atom>();
1085
1086                for (Chain c : s.getChains()) {
1087                        for (Group g : c.getAtomGroups()) {
1088                                if (g.hasAtom(CA_ATOM_NAME)
1089                                                && g.getAtom(CA_ATOM_NAME).getElement() == Element.C) {
1090                                        atoms.add(g.getAtom(CA_ATOM_NAME));
1091                                }
1092                        }
1093                }
1094
1095                return atoms.toArray(new Atom[atoms.size()]);
1096        }
1097
1098        /**
1099         * Gets a representative atom for each group that is part of the chain
1100         * backbone. Note that modified aminoacids won't be returned as part of the
1101         * backbone if the {@link org.biojava.nbio.structure.io.mmcif.ReducedChemCompProvider} was used to load the
1102         * structure.
1103         *
1104         * For amino acids, the representative is a CA carbon. For nucleotides, the
1105         * representative is the {@value #NUCLEOTIDE_REPRESENTATIVE}. Other group
1106         * types will be ignored.
1107         *
1108         * @param s
1109         *            Input structure
1110         * @return representative Atoms of the structure backbone
1111         * @since Biojava 4.1.0
1112         */
1113        public static Atom[] getRepresentativeAtomArray(Structure s) {
1114
1115                List<Atom> atoms = new ArrayList<Atom>();
1116
1117                for (Chain c : s.getChains()) {
1118                        Atom[] chainAtoms = getRepresentativeAtomArray(c);
1119                        for (Atom a : chainAtoms) {
1120                                atoms.add(a);
1121                        }
1122                }
1123
1124                return atoms.toArray(new Atom[atoms.size()]);
1125        }
1126
1127        /**
1128         * Return an Atom array of the main chain atoms: CA, C, N, O Any group that
1129         * contains those atoms will be included, be it a standard aminoacid or not
1130         *
1131         * @param s
1132         *            the structure object
1133         * @return an Atom[] array
1134         */
1135        public static Atom[] getBackboneAtomArray(Structure s) {
1136
1137                List<Atom> atoms = new ArrayList<Atom>();
1138
1139                for (Chain c : s.getChains()) {
1140                        for (Group g : c.getAtomGroups()) {
1141                                if (g.hasAminoAtoms()) {
1142                                        // this means we will only take atoms grom groups that have
1143                                        // complete backbones
1144                                        for (Atom a : g.getAtoms()) {
1145                                                switch (g.getType()) {
1146                                                case NUCLEOTIDE:
1147                                                        // Nucleotide backbone
1148                                                        if (a.getName().equals(C1_ATOM_NAME))
1149                                                                atoms.add(a);
1150                                                        if (a.getName().equals(C2_ATOM_NAME))
1151                                                                atoms.add(a);
1152                                                        if (a.getName().equals(C3_ATOM_NAME))
1153                                                                atoms.add(a);
1154                                                        if (a.getName().equals(C4_ATOM_NAME))
1155                                                                atoms.add(a);
1156                                                        if (a.getName().equals(O2_ATOM_NAME))
1157                                                                atoms.add(a);
1158                                                        if (a.getName().equals(O3_ATOM_NAME))
1159                                                                atoms.add(a);
1160                                                        if (a.getName().equals(O4_ATOM_NAME))
1161                                                                atoms.add(a);
1162                                                        if (a.getName().equals(O5_ATOM_NAME))
1163                                                                atoms.add(a);
1164                                                        if (a.getName().equals(OP1_ATOM_NAME))
1165                                                                atoms.add(a);
1166                                                        if (a.getName().equals(OP2_ATOM_NAME))
1167                                                                atoms.add(a);
1168                                                        if (a.getName().equals(P_ATOM_NAME))
1169                                                                atoms.add(a);
1170                                                        // TODO Allow C4* names as well as C4'? -SB 3/2015
1171                                                        break;
1172                                                case AMINOACID:
1173                                                default:
1174                                                        // we do it this way instead of with g.getAtom() to
1175                                                        // be sure we always use the same order as original
1176                                                        if (a.getName().equals(CA_ATOM_NAME))
1177                                                                atoms.add(a);
1178                                                        if (a.getName().equals(C_ATOM_NAME))
1179                                                                atoms.add(a);
1180                                                        if (a.getName().equals(N_ATOM_NAME))
1181                                                                atoms.add(a);
1182                                                        if (a.getName().equals(O_ATOM_NAME))
1183                                                                atoms.add(a);
1184                                                        break;
1185                                                }
1186                                        }
1187                                }
1188                        }
1189
1190                }
1191
1192                return atoms.toArray(new Atom[atoms.size()]);
1193        }
1194
1195        /**
1196         * Convert three character amino acid codes into single character e.g.
1197         * convert CYS to C. Valid 3-letter codes will be those of the standard 20
1198         * amino acids plus MSE, CSE, SEC, PYH, PYL (see the {@link #aminoAcids}
1199         * map)
1200         *
1201         * @return the 1 letter code, or null if the given 3 letter code does not
1202         *         correspond to an amino acid code
1203         * @param groupCode3
1204         *            a three character amino acid representation String
1205         * @see {@link #get1LetterCode(String)}
1206         */
1207        public static final Character get1LetterCodeAmino(String groupCode3) {
1208                return aminoAcids.get(groupCode3);
1209        }
1210
1211        /**
1212         * Convert a three letter amino acid or nucleotide code into a single
1213         * character code. If the code does not correspond to an amino acid or
1214         * nucleotide, returns {@link #UNKNOWN_GROUP_LABEL}.
1215         *
1216         * Returned null for nucleotides prior to version 4.0.1.
1217         *
1218         * @param groupCode3
1219         *            three letter representation
1220         * @return The 1-letter abbreviation
1221         */
1222        public static final Character get1LetterCode(String groupCode3) {
1223
1224                Character code1;
1225
1226                // is it a standard amino acid ?
1227                code1 = get1LetterCodeAmino(groupCode3);
1228
1229                if (code1 == null) {
1230                        // hm groupCode3 is not standard
1231                        // perhaps it is a nucleotide?
1232                        groupCode3 = groupCode3.trim();
1233                        if (isNucleotide(groupCode3)) {
1234                                code1 = nucleotides30.get(groupCode3);
1235                                if (code1 == null) {
1236                                        code1 = nucleotides23.get(groupCode3);
1237                                }
1238                                if (code1 == null) {
1239                                        code1 = UNKNOWN_GROUP_LABEL;
1240                                }
1241                        } else {
1242                                // does not seem to be so let's assume it is
1243                                // nonstandard aminoacid and label it "X"
1244                                // logger.warning("unknown group name "+groupCode3 );
1245                                code1 = UNKNOWN_GROUP_LABEL;
1246                        }
1247                }
1248
1249                return code1;
1250
1251        }
1252
1253        /**
1254         * Test if the three-letter code of an ATOM entry corresponds to a
1255         * nucleotide or to an aminoacid.
1256         *
1257         * @param groupCode3
1258         *            3-character code for a group.
1259         *
1260         */
1261        public static final boolean isNucleotide(String groupCode3) {
1262                String code = groupCode3.trim();
1263                return nucleotides30.containsKey(code)
1264                                || nucleotides23.containsKey(code);
1265        }
1266
1267        /**
1268         * Reduce a structure to provide a smaller representation . Only takes the
1269         * first model of the structure. If chainName is provided only return a
1270         * structure containing that Chain ID. Converts lower case chain IDs to
1271         * upper case if structure does not contain a chain with that ID.
1272         *
1273         * @param s
1274         * @param chainId
1275         * @return Structure
1276         * @since 3.0
1277         * @deprecated Use {@link StructureIdentifier#reduce(Structure)} instead (v. 4.2.0)
1278         */
1279        @Deprecated
1280        public static final Structure getReducedStructure(Structure s,
1281                        String chainId) throws StructureException {
1282                // since we deal here with structure alignments,
1283                // only use Model 1...
1284
1285                Structure newS = new StructureImpl();
1286                newS.setPDBCode(s.getPDBCode());
1287                newS.setPDBHeader(s.getPDBHeader());
1288                newS.setName(s.getName());
1289                newS.setSSBonds(s.getSSBonds());
1290                newS.setDBRefs(s.getDBRefs());
1291                newS.setSites(s.getSites());
1292                newS.setBiologicalAssembly(s.isBiologicalAssembly());
1293                newS.setEntityInfos(s.getEntityInfos());
1294                newS.setSSBonds(s.getSSBonds());
1295                newS.setSites(s.getSites());
1296
1297                if (chainId != null)
1298                        chainId = chainId.trim();
1299
1300                if (chainId == null || chainId.equals("")) {
1301                        // only get model 0
1302                        List<Chain> model0 = s.getModel(0);
1303                        for (Chain c : model0) {
1304                                newS.addChain(c);
1305                        }
1306                        return newS;
1307
1308                }
1309
1310                Chain c = null;
1311                try {
1312                        c = s.getChainByPDB(chainId);
1313                } catch (StructureException e) {
1314                        logger.warn(e.getMessage() + ". Chain id " + chainId
1315                                        + " did not match, trying upper case Chain id.");
1316                        c = s.getChainByPDB(chainId.toUpperCase());
1317
1318                }
1319                if (c != null) {
1320                        newS.addChain(c);
1321                        for (EntityInfo comp : s.getEntityInfos()) {
1322                                if (comp.getChainIds() != null
1323                                                && comp.getChainIds().contains(c.getChainID())) {
1324                                        // found matching entity info. set description...
1325                                        newS.getPDBHeader().setDescription(
1326                                                        "Chain " + c.getChainID() + " of " + s.getPDBCode()
1327                                                        + " " + comp.getDescription());
1328                                }
1329                        }
1330                }
1331
1332                return newS;
1333        }
1334
1335        public static final String convertAtomsToSeq(Atom[] atoms) {
1336
1337                StringBuilder buf = new StringBuilder();
1338                Group prevGroup = null;
1339                for (Atom a : atoms) {
1340                        Group g = a.getGroup();
1341                        if (prevGroup != null) {
1342                                if (prevGroup.equals(g)) {
1343                                        // we add each group only once.
1344                                        continue;
1345                                }
1346                        }
1347                        String code3 = g.getPDBName();
1348                        Character code1 = get1LetterCodeAmino(code3);
1349                        if (code1 == null)
1350                                code1 = UNKNOWN_GROUP_LABEL;
1351
1352                        buf.append(code1);
1353
1354                        prevGroup = g;
1355
1356                }
1357                return buf.toString();
1358        }
1359
1360        /**
1361         * Get a group represented by a ResidueNumber.
1362         *
1363         * @param struc
1364         *            a {@link Structure}
1365         * @param pdbResNum
1366         *            a {@link ResidueNumber}
1367         * @return a group in the structure that is represented by the pdbResNum.
1368         * @throws StructureException
1369         *             if the group cannot be found.
1370         */
1371        public static final Group getGroupByPDBResidueNumber(Structure struc,
1372                        ResidueNumber pdbResNum) throws StructureException {
1373                if (struc == null || pdbResNum == null) {
1374                        throw new IllegalArgumentException("Null argument(s).");
1375                }
1376
1377                Chain chain = struc.getPolyChainByPDB(pdbResNum.getChainName());
1378
1379                return chain.getGroupByPDB(pdbResNum);
1380        }
1381
1382        /**
1383         * Returns the set of intra-chain contacts for the given chain for given
1384         * atom names, i.e. the contact map. Uses a geometric hashing algorithm that
1385         * speeds up the calculation without need of full distance matrix. The
1386         * parsing mode {@link FileParsingParameters#setAlignSeqRes(boolean)} needs
1387         * to be set to true for this to work.
1388         *
1389         * @param chain
1390         * @param atomNames
1391         *            the array with atom names to be used. Beware: CA will do both
1392         *            C-alphas an Calciums if null all non-H atoms of non-hetatoms
1393         *            will be used
1394         * @param cutoff
1395         * @return
1396         */
1397        public static AtomContactSet getAtomsInContact(Chain chain,
1398                        String[] atomNames, double cutoff) {
1399                Grid grid = new Grid(cutoff);
1400
1401                Atom[] atoms = null;
1402                if (atomNames == null) {
1403                        atoms = getAllNonHAtomArray(chain, false);
1404                } else {
1405                        atoms = getAtomArray(chain, atomNames);
1406                }
1407                // If tha
1408                if(atoms.length==0){ 
1409                        logger.warn("No atoms found for buidling grid!");
1410                        return new AtomContactSet(cutoff);
1411                }
1412                grid.addAtoms(atoms);
1413
1414                return grid.getAtomContacts();
1415        }
1416
1417        /**
1418         * Returns the set of intra-chain contacts for the given chain for all non-H
1419         * atoms of non-hetatoms, i.e. the contact map. Uses a geometric hashing
1420         * algorithm that speeds up the calculation without need of full distance
1421         * matrix. The parsing mode
1422         * {@link FileParsingParameters#setAlignSeqRes(boolean)} needs to be set to
1423         * true for this to work.
1424         *
1425         * @param chain
1426         * @param cutoff
1427         * @return
1428         */
1429        public static AtomContactSet getAtomsInContact(Chain chain, double cutoff) {
1430                return getAtomsInContact(chain, (String[]) null, cutoff);
1431        }
1432
1433        /**
1434         * Returns the set of intra-chain contacts for the given chain for C-alpha
1435         * atoms (including non-standard aminoacids appearing as HETATM groups),
1436         * i.e. the contact map. Uses a geometric hashing algorithm that speeds up
1437         * the calculation without need of full distance matrix. The parsing mode
1438         * {@link FileParsingParameters#setAlignSeqRes(boolean)} needs to be set to
1439         * true for this to work.
1440         *
1441         * @param chain
1442         * @param cutoff
1443         * @return
1444         * @see {@link #getRepresentativeAtomsInContact(Chain, double)}
1445         */
1446        public static AtomContactSet getAtomsCAInContact(Chain chain, double cutoff) {
1447                Grid grid = new Grid(cutoff);
1448
1449                Atom[] atoms = getAtomCAArray(chain);
1450
1451                grid.addAtoms(atoms);
1452
1453                return grid.getAtomContacts();
1454        }
1455
1456        /**
1457         * Returns the set of intra-chain contacts for the given chain for C-alpha
1458         * or C3' atoms (including non-standard aminoacids appearing as HETATM
1459         * groups), i.e. the contact map. Uses a geometric hashing algorithm that
1460         * speeds up the calculation without need of full distance matrix.
1461         *
1462         * @param chain
1463         * @param cutoff
1464         * @return
1465         * @since Biojava 4.1.0
1466         */
1467        public static AtomContactSet getRepresentativeAtomsInContact(Chain chain,
1468                        double cutoff) {
1469                Grid grid = new Grid(cutoff);
1470
1471                Atom[] atoms = getRepresentativeAtomArray(chain);
1472
1473                grid.addAtoms(atoms);
1474
1475                return grid.getAtomContacts();
1476        }
1477
1478        /**
1479         * Returns the set of inter-chain contacts between the two given chains for
1480         * the given atom names. Uses a geometric hashing algorithm that speeds up
1481         * the calculation without need of full distance matrix. The parsing mode
1482         * {@link FileParsingParameters#setAlignSeqRes(boolean)} needs to be set to
1483         * true for this to work.
1484         *
1485         * @param chain1
1486         * @param chain2
1487         * @param atomNames
1488         *            the array with atom names to be used. For Calphas use {"CA"},
1489         *            if null all non-H atoms will be used. Note HET atoms are
1490         *            ignored unless this parameter is null.
1491         * @param cutoff
1492         * @param hetAtoms
1493         *            if true HET atoms are included, if false they are not
1494         * @return
1495         */
1496        public static AtomContactSet getAtomsInContact(Chain chain1, Chain chain2,
1497                        String[] atomNames, double cutoff, boolean hetAtoms) {
1498                Grid grid = new Grid(cutoff);
1499                Atom[] atoms1 = null;
1500                Atom[] atoms2 = null;
1501                if (atomNames == null) {
1502                        atoms1 = getAllNonHAtomArray(chain1, hetAtoms);
1503                        atoms2 = getAllNonHAtomArray(chain2, hetAtoms);
1504                } else {
1505                        atoms1 = getAtomArray(chain1, atomNames);
1506                        atoms2 = getAtomArray(chain2, atomNames);
1507                }
1508                grid.addAtoms(atoms1, atoms2);
1509
1510                return grid.getAtomContacts();
1511        }
1512
1513        /**
1514         * Returns the set of inter-chain contacts between the two given chains for
1515         * all non-H atoms. Uses a geometric hashing algorithm that speeds up the
1516         * calculation without need of full distance matrix. The parsing mode
1517         * {@link FileParsingParameters#setAlignSeqRes(boolean)} needs to be set to
1518         * true for this to work.
1519         *
1520         * @param chain1
1521         * @param chain2
1522         * @param cutoff
1523         * @param hetAtoms
1524         *            if true HET atoms are included, if false they are not
1525         * @return
1526         */
1527        public static AtomContactSet getAtomsInContact(Chain chain1, Chain chain2,
1528                        double cutoff, boolean hetAtoms) {
1529                return getAtomsInContact(chain1, chain2, null, cutoff, hetAtoms);
1530        }
1531
1532        /**
1533         * Finds Groups in {@code structure} that contain at least one Atom that is
1534         * within {@code radius} Angstroms of {@code centroid}.
1535         *
1536         * @param structure
1537         *            The structure from which to find Groups
1538         * @param centroid
1539         *            The centroid of the shell
1540         * @param excludeResidues
1541         *            A list of ResidueNumbers to exclude
1542         * @param radius
1543         *            The radius from {@code centroid}, in Angstroms
1544         * @param includeWater
1545         *            Whether to include Groups whose <em>only</em> atoms are water
1546         * @param useAverageDistance
1547         *            When set to true, distances are the arithmetic mean (1-norm)
1548         *            of the distances of atoms that belong to the group and that
1549         *            are within the shell; otherwise, distances are the minimum of
1550         *            these values
1551         * @return A map of Groups within (or partially within) the shell, to their
1552         *         distances in Angstroms
1553         */
1554        public static Map<Group, Double> getGroupDistancesWithinShell(
1555                        Structure structure, Atom centroid,
1556                        Set<ResidueNumber> excludeResidues, double radius,
1557                        boolean includeWater, boolean useAverageDistance) {
1558
1559                // for speed, we avoid calculating square roots
1560                radius = radius * radius;
1561
1562                Map<Group, Double> distances = new HashMap<Group, Double>();
1563
1564                // we only need this if we're averaging distances
1565                // note that we can't use group.getAtoms().size() because some the
1566                // group's atoms be outside the shell
1567                Map<Group, Integer> atomCounts = new HashMap<Group, Integer>();
1568
1569                for (Chain chain : structure.getChains()) {
1570                        groupLoop: for (Group chainGroup : chain.getAtomGroups()) {
1571
1572                                // exclude water
1573                                if (!includeWater && chainGroup.isWater())
1574                                        continue;
1575
1576                                // check blacklist of residue numbers
1577                                for (ResidueNumber rn : excludeResidues) {
1578                                        if (rn.equals(chainGroup.getResidueNumber()))
1579                                                continue groupLoop;
1580                                }
1581
1582                                for (Atom testAtom : chainGroup.getAtoms()) {
1583
1584                                        // use getDistanceFast as we are doing a lot of comparisons
1585                                        double dist = Calc.getDistanceFast(centroid, testAtom);
1586
1587                                        // if we're the shell
1588                                        if (dist <= radius) {
1589                                                if (!distances.containsKey(chainGroup))
1590                                                        distances.put(chainGroup, Double.POSITIVE_INFINITY);
1591                                                if (useAverageDistance) {
1592                                                        // sum the distance; we'll divide by the total
1593                                                        // number later
1594                                                        // here, we CANNOT use fastDistance (distance
1595                                                        // squared) because we want the arithmetic mean
1596                                                        distances.put(chainGroup, distances.get(chainGroup)
1597                                                                        + Math.sqrt(dist));
1598                                                        if (!atomCounts.containsKey(chainGroup))
1599                                                                atomCounts.put(chainGroup, 0);
1600                                                        atomCounts.put(chainGroup,
1601                                                                        atomCounts.get(chainGroup) + 1);
1602                                                } else {
1603                                                        // take the minimum distance among all atoms of
1604                                                        // chainGroup
1605                                                        // note that we can't break here because we might
1606                                                        // find a smaller distance
1607                                                        if (dist < distances.get(chainGroup)) {
1608                                                                distances.put(chainGroup, dist);
1609                                                        }
1610                                                }
1611                                        }
1612
1613                                }
1614                        }
1615                }
1616
1617                if (useAverageDistance) {
1618                        for (Map.Entry<Group, Double> entry : distances.entrySet()) {
1619                                int count = atomCounts.get(entry.getKey());
1620                                distances.put(entry.getKey(), entry.getValue() / count);
1621                        }
1622                } else {
1623                        // in this case we used getDistanceFast
1624                        for (Map.Entry<Group, Double> entry : distances.entrySet()) {
1625                                distances.put(entry.getKey(), Math.sqrt(entry.getValue()));
1626                        }
1627                }
1628
1629                return distances;
1630
1631        }
1632
1633        public static Set<Group> getGroupsWithinShell(Structure structure,
1634                        Atom atom, Set<ResidueNumber> excludeResidues, double distance,
1635                        boolean includeWater) {
1636
1637                // square the distance to use as a comparison against getDistanceFast
1638                // which returns the square of a distance.
1639                distance = distance * distance;
1640
1641                Set<Group> returnSet = new LinkedHashSet<Group>();
1642                for (Chain chain : structure.getChains()) {
1643                        groupLoop: for (Group chainGroup : chain.getAtomGroups()) {
1644                                if (!includeWater && chainGroup.isWater())
1645                                        continue;
1646                                for (ResidueNumber rn : excludeResidues) {
1647                                        if (rn.equals(chainGroup.getResidueNumber()))
1648                                                continue groupLoop;
1649                                }
1650                                for (Atom atomB : chainGroup.getAtoms()) {
1651
1652                                        // use getDistanceFast as we are doing a lot of comparisons
1653                                        double dist = Calc.getDistanceFast(atom, atomB);
1654                                        if (dist <= distance) {
1655                                                returnSet.add(chainGroup);
1656                                                break;
1657                                        }
1658
1659                                }
1660                        }
1661                }
1662                return returnSet;
1663        }
1664
1665        /**
1666         * <p>
1667         * Returns a Set of Groups in a structure within the distance specified of a
1668         * given group.
1669         * </p>
1670         * <p>
1671         * Updated 18-Sep-2015 sroughley to return a Set so only a unique set of
1672         * Groups returned
1673         *
1674         * @param structure
1675         *            The structure to work with
1676         * @param group
1677         *            The 'query' group
1678         * @param distance
1679         *            The cutoff distance
1680         * @param includeWater
1681         *            Should water residues be included in the output?
1682         * @return {@link LinkedHashSet} of {@link Group}s within at least one atom
1683         *         with {@code distance} of at least one atom in {@code group}
1684         */
1685        public static Set<Group> getGroupsWithinShell(Structure structure,
1686                        Group group, double distance, boolean includeWater) {
1687
1688                Set<Group> returnList = new LinkedHashSet<Group>();
1689
1690                Set<ResidueNumber> excludeGroups = new HashSet<ResidueNumber>();
1691                excludeGroups.add(group.getResidueNumber());
1692                for (Atom atom : group.getAtoms()) {
1693                        Set<Group> set = getGroupsWithinShell(structure, atom,
1694                                        excludeGroups, distance, includeWater);
1695                        returnList.addAll(set);
1696                }
1697
1698                return returnList;
1699        }
1700
1701        /**
1702         * Remove all models from a Structure and keep only the first
1703         *
1704         * @param s
1705         *            original Structure
1706         * @return a structure that contains only the first model
1707         * @since 3.0.5
1708         */
1709        public static Structure removeModels(Structure s) {
1710                if (s.nrModels() == 1)
1711                        return s;
1712
1713                Structure n = new StructureImpl();
1714                // go through whole substructure and clone ...
1715
1716                // copy structure data
1717
1718                n.setPDBCode(s.getPDBCode());
1719                n.setName(s.getName());
1720
1721                // TODO: do deep copying of data!
1722                n.setPDBHeader(s.getPDBHeader());
1723                n.setDBRefs(s.getDBRefs());
1724
1725                n.setSites(s.getSites());
1726
1727                n.setChains(s.getModel(0));
1728
1729                return n;
1730
1731        }
1732
1733        /**
1734         * Removes all polymeric and solvent groups from a list of groups
1735         *
1736         */
1737        public static List<Group> filterLigands(List<Group> allGroups) {
1738
1739                List<Group> groups = new ArrayList<Group>();
1740                for (Group g : allGroups) {
1741
1742                        if ( g.isPolymeric())
1743                                continue;
1744
1745                        if (!g.isWater()) {
1746                                groups.add(g);
1747                        }
1748                }
1749
1750                return groups;
1751        }
1752
1753        /**
1754         * Short version of {@link #getStructure(String, PDBFileParser, AtomCache)}
1755         * which creates new parsers when needed
1756         *
1757         * @param name
1758         * @return
1759         * @throws IOException
1760         * @throws StructureException
1761         */
1762        public static Structure getStructure(String name) throws IOException,
1763        StructureException {
1764                return StructureTools.getStructure(name, null, null);
1765        }
1766
1767        /**
1768         * Flexibly get a structure from an input String. The intent of this method
1769         * is to allow any reasonable string which could refer to a structure to be
1770         * correctly parsed. The following are currently supported:
1771         * <ol>
1772         * <li>Filename (if name refers to an existing file)
1773         * <li>PDB ID
1774         * <li>SCOP domains
1775         * <li>PDP domains
1776         * <li>Residue ranges
1777         * <li>Other formats supported by AtomCache
1778         * </ol>
1779         *
1780         * @param name
1781         *            Some reference to the protein structure
1782         * @param parser
1783         *            A clean PDBFileParser to use if it is a file. If null, a
1784         *            PDBFileParser will be instantiated if needed.
1785         * @param cache
1786         *            An AtomCache to use if the structure can be fetched from the
1787         *            PDB. If null, a AtomCache will be instantiated if needed.
1788         * @return A Structure object
1789         * @throws IOException
1790         *             if name is an existing file, but doesn't parse correctly
1791         * @throws StructureException
1792         *             if the format is unknown, or if AtomCache throws an
1793         *             exception.
1794         */
1795        public static Structure getStructure(String name, PDBFileParser parser,
1796                        AtomCache cache) throws IOException, StructureException {
1797                File f = new File(FileDownloadUtils.expandUserHome(name));
1798                if (f.exists()) {
1799                        if (parser == null) {
1800                                parser = new PDBFileParser();
1801                        }
1802                        InputStream inStream = new FileInputStream(f);
1803                        return parser.parsePDBFile(inStream);
1804                } else {
1805                        if (cache == null) {
1806                                cache = new AtomCache();
1807                        }
1808                        return cache.getStructure(name);
1809                }
1810        }
1811
1812        /**
1813         * @deprecated  use {@link Chain#isProtein()} instead.
1814         */
1815        @Deprecated
1816        public static boolean isProtein(Chain c) {
1817
1818                return c.isProtein();
1819        }
1820
1821        /**
1822         * @deprecated use {@link Chain#isNucleicAcid()} instead.
1823         */
1824        @Deprecated
1825        public static boolean isNucleicAcid(Chain c) {
1826                return c.isNucleicAcid();
1827        }
1828
1829        /**
1830         * @deprecated use {@link Chain#getPredominantGroupType()} instead.
1831         */
1832        @Deprecated
1833        public static GroupType getPredominantGroupType(Chain c) {
1834                return c.getPredominantGroupType();
1835        }
1836
1837        /**
1838         * @deprecated use {@link Chain#isWaterOnly()} instead.
1839         */
1840        @Deprecated
1841        public static boolean isChainWaterOnly(Chain c) {
1842                return c.isWaterOnly();
1843        }
1844
1845        /** @deprecated  use {@link Chain#isPureNonPolymer()} instead.
1846         */
1847        @Deprecated
1848        public static boolean isChainPureNonPolymer(Chain c) {
1849
1850                return c.isPureNonPolymer();
1851        }
1852
1853        /**
1854         * Cleans up the structure's alternate location groups. All alternate location groups should have all atoms (except in the case of microheterogenity) or when a deuetuim exiss.
1855         * Ensure that all the alt loc groups have all the atoms in the main group
1856         * @param structure The Structure to be cleaned up
1857         */
1858        public static void cleanUpAltLocs(Structure structure) {
1859                for (int i =0; i< structure.nrModels() ; i++){
1860                        for (Chain chain : structure.getModel(i)) {
1861                                for (Group group : chain.getAtomGroups()) {
1862                                        for (Group altLocGroup : group.getAltLocs()) { 
1863                                                for ( Atom groupAtom : group.getAtoms()) {
1864                                                        // If this alt loc doesn't have this atom
1865                                                        if (! altLocGroup.hasAtom(groupAtom.getName())) {
1866                                                                // Fix for microheterogenity
1867                                                                if (altLocGroup.getPDBName().equals(group.getPDBName())) {
1868                                                                        // If it's a Hydrogen then we check for it's Deuterated brother
1869                                                                        if(hasDeuteratedEquiv(groupAtom, altLocGroup)){
1870                                                                                
1871                                                                        }
1872                                                                        else{
1873                                                                                altLocGroup.addAtom(groupAtom);
1874                                                                        }
1875                                                                }
1876                                                        }
1877                                                }
1878                                        }
1879                                }
1880                        }
1881                }
1882        }
1883
1884        /**
1885         * Check to see if an Deuterated atom has a non deuterated brother in the group.
1886         * @param atom the input atom that is putatively deuterium
1887         * @param currentGroup the group the atom is in
1888         * @return true if the atom is deuterated and it's hydrogen equive exists.
1889         */
1890        public static boolean hasNonDeuteratedEquiv(Atom atom, Group currentGroup) {
1891                if(atom.getElement()==Element.D && currentGroup.hasAtom(replaceFirstChar(atom.getName(),'D', 'H'))) {
1892                        // If it's deuterated and has a non-deuterated brother
1893                        return true;
1894                }
1895                return false;
1896        }
1897        
1898        /**
1899         * Check to see if a Hydorgen has a  Deuterated brother in the group.
1900         * @param atom the input atom that is putatively hydorgen
1901         * @param currentGroup the group the atom is in
1902         * @return true if the atom is hydrogen and it's Deuterium equiv exists.
1903         */
1904        public static boolean hasDeuteratedEquiv(Atom atom, Group currentGroup) {
1905                if(atom.getElement()==Element.H && currentGroup.hasAtom(replaceFirstChar(atom.getName(),'H', 'D'))) {
1906                        // If it's hydrogen and has a deuterated brother
1907                        return true;
1908                }
1909                return false;
1910        }
1911
1912        private static String replaceFirstChar(String name, char c, char d) {
1913                if(name.charAt(0)==c){
1914                        return name.replaceFirst(String.valueOf(c), String.valueOf(d));
1915                }
1916                return name;
1917        }
1918}