Interface Scorer
-
- All Known Subinterfaces:
Aligner<S,C>
,MatrixAligner<S,C>
,PairInProfileScorer<S,C>
,PairwiseSequenceAligner<S,C>
,PairwiseSequenceScorer<S,C>
,PartitionRefiner<S,C>
,ProfileProfileAligner<S,C>
,ProfileProfileScorer<S,C>
,RescoreRefiner<S,C>
- All Known Implementing Classes:
AbstractMatrixAligner
,AbstractPairwiseSequenceAligner
,AbstractProfileProfileAligner
,AbstractScorer
,AnchoredPairwiseSequenceAligner
,FractionalIdentityInProfileScorer
,FractionalIdentityScorer
,FractionalSimilarityInProfileScorer
,FractionalSimilarityScorer
,GuanUberbacher
,NeedlemanWunsch
,SimpleProfileProfileAligner
,SmithWaterman
,StandardRescoreRefiner
,SubstitutionMatrixScorer
public interface Scorer
Defines an algorithm which computes a score.- Author:
- Mark Chapman
-
-
Method Summary
All Methods Instance Methods Abstract Methods Modifier and Type Method Description double
getDistance()
Returns score as a distance between 0.0 and 1.0.double
getDistance(double scale)
Returns score as a distance between 0.0 and scale.double
getMaxScore()
Returns maximum possible score.double
getMinScore()
Returns minimum possible score.double
getScore()
Returns score resulting from algorithm.double
getSimilarity()
Returns score as a similarity between 0.0 and 1.0.double
getSimilarity(double scale)
Returns score as a similarity between 0.0 and scale.
-
-
-
Method Detail
-
getDistance
double getDistance()
Returns score as a distance between 0.0 and 1.0. This equals (getMaxScore()
-getScore()
) / (getMaxScore()
-getMinScore()
).- Returns:
- score as a distance between 0.0 and 1.0
-
getDistance
double getDistance(double scale)
Returns score as a distance between 0.0 and scale. This equals scale * (getMaxScore()
-getScore()
) / (getMaxScore()
-getMinScore()
).- Parameters:
scale
- maximum distance- Returns:
- score as a distance between 0.0 and scale
-
getMaxScore
double getMaxScore()
Returns maximum possible score.- Returns:
- maximum possible score
-
getMinScore
double getMinScore()
Returns minimum possible score.- Returns:
- minimum possible score
-
getScore
double getScore()
Returns score resulting from algorithm. This should normalize between 0 and 1 by calculating (getScore()
-getMinScore()
) / (getMaxScore()
-getMinScore()
).- Returns:
- score resulting from algorithm
-
getSimilarity
double getSimilarity()
Returns score as a similarity between 0.0 and 1.0. This equals (getScore()
-getMinScore()
) / (getMaxScore()
-getMinScore()
).- Returns:
- score as a similarity between 0.0 and 1.0
-
getSimilarity
double getSimilarity(double scale)
Returns score as a similarity between 0.0 and scale. This equals scale * (getScore()
-getMinScore()
) / (getMaxScore()
-getMinScore()
).- Parameters:
scale
- maximum similarity- Returns:
- score as a similarity between 0.0 and scale
-
-