Interface Scorer
-
- All Known Subinterfaces:
Aligner<S,C>,MatrixAligner<S,C>,PairInProfileScorer<S,C>,PairwiseSequenceAligner<S,C>,PairwiseSequenceScorer<S,C>,PartitionRefiner<S,C>,ProfileProfileAligner<S,C>,ProfileProfileScorer<S,C>,RescoreRefiner<S,C>
- All Known Implementing Classes:
AbstractMatrixAligner,AbstractPairwiseSequenceAligner,AbstractProfileProfileAligner,AbstractScorer,AnchoredPairwiseSequenceAligner,FractionalIdentityInProfileScorer,FractionalIdentityScorer,FractionalSimilarityInProfileScorer,FractionalSimilarityScorer,GuanUberbacher,NeedlemanWunsch,SimpleProfileProfileAligner,SmithWaterman,StandardRescoreRefiner,SubstitutionMatrixScorer
public interface Scorer
Defines an algorithm which computes a score.- Author:
- Mark Chapman
-
-
Method Summary
All Methods Instance Methods Abstract Methods Modifier and Type Method Description doublegetDistance()Returns score as a distance between 0.0 and 1.0.doublegetDistance(double scale)Returns score as a distance between 0.0 and scale.doublegetMaxScore()Returns maximum possible score.doublegetMinScore()Returns minimum possible score.doublegetScore()Returns score resulting from algorithm.doublegetSimilarity()Returns score as a similarity between 0.0 and 1.0.doublegetSimilarity(double scale)Returns score as a similarity between 0.0 and scale.
-
-
-
Method Detail
-
getDistance
double getDistance()
Returns score as a distance between 0.0 and 1.0. This equals (getMaxScore()-getScore()) / (getMaxScore()-getMinScore()).- Returns:
- score as a distance between 0.0 and 1.0
-
getDistance
double getDistance(double scale)
Returns score as a distance between 0.0 and scale. This equals scale * (getMaxScore()-getScore()) / (getMaxScore()-getMinScore()).- Parameters:
scale- maximum distance- Returns:
- score as a distance between 0.0 and scale
-
getMaxScore
double getMaxScore()
Returns maximum possible score.- Returns:
- maximum possible score
-
getMinScore
double getMinScore()
Returns minimum possible score.- Returns:
- minimum possible score
-
getScore
double getScore()
Returns score resulting from algorithm. This should normalize between 0 and 1 by calculating (getScore()-getMinScore()) / (getMaxScore()-getMinScore()).- Returns:
- score resulting from algorithm
-
getSimilarity
double getSimilarity()
Returns score as a similarity between 0.0 and 1.0. This equals (getScore()-getMinScore()) / (getMaxScore()-getMinScore()).- Returns:
- score as a similarity between 0.0 and 1.0
-
getSimilarity
double getSimilarity(double scale)
Returns score as a similarity between 0.0 and scale. This equals scale * (getScore()-getMinScore()) / (getMaxScore()-getMinScore()).- Parameters:
scale- maximum similarity- Returns:
- score as a similarity between 0.0 and scale
-
-