Interface Scorer
- 
- All Known Subinterfaces:
 Aligner<S,C>,MatrixAligner<S,C>,PairInProfileScorer<S,C>,PairwiseSequenceAligner<S,C>,PairwiseSequenceScorer<S,C>,PartitionRefiner<S,C>,ProfileProfileAligner<S,C>,ProfileProfileScorer<S,C>,RescoreRefiner<S,C>
- All Known Implementing Classes:
 AbstractMatrixAligner,AbstractPairwiseSequenceAligner,AbstractProfileProfileAligner,AbstractScorer,AnchoredPairwiseSequenceAligner,FractionalIdentityInProfileScorer,FractionalIdentityScorer,FractionalSimilarityInProfileScorer,FractionalSimilarityScorer,GuanUberbacher,NeedlemanWunsch,SimpleProfileProfileAligner,SmithWaterman,StandardRescoreRefiner,SubstitutionMatrixScorer
public interface Scorer
Defines an algorithm which computes a score.- Author:
 - Mark Chapman
 
 
- 
- 
Method Summary
All Methods Instance Methods Abstract Methods Modifier and Type Method Description doublegetDistance()Returns score as a distance between 0.0 and 1.0.doublegetDistance(double scale)Returns score as a distance between 0.0 and scale.doublegetMaxScore()Returns maximum possible score.doublegetMinScore()Returns minimum possible score.doublegetScore()Returns score resulting from algorithm.doublegetSimilarity()Returns score as a similarity between 0.0 and 1.0.doublegetSimilarity(double scale)Returns score as a similarity between 0.0 and scale. 
 - 
 
- 
- 
Method Detail
- 
getDistance
double getDistance()
Returns score as a distance between 0.0 and 1.0. This equals (getMaxScore()-getScore()) / (getMaxScore()-getMinScore()).- Returns:
 - score as a distance between 0.0 and 1.0
 
 
- 
getDistance
double getDistance(double scale)
Returns score as a distance between 0.0 and scale. This equals scale * (getMaxScore()-getScore()) / (getMaxScore()-getMinScore()).- Parameters:
 scale- maximum distance- Returns:
 - score as a distance between 0.0 and scale
 
 
- 
getMaxScore
double getMaxScore()
Returns maximum possible score.- Returns:
 - maximum possible score
 
 
- 
getMinScore
double getMinScore()
Returns minimum possible score.- Returns:
 - minimum possible score
 
 
- 
getScore
double getScore()
Returns score resulting from algorithm. This should normalize between 0 and 1 by calculating (getScore()-getMinScore()) / (getMaxScore()-getMinScore()).- Returns:
 - score resulting from algorithm
 
 
- 
getSimilarity
double getSimilarity()
Returns score as a similarity between 0.0 and 1.0. This equals (getScore()-getMinScore()) / (getMaxScore()-getMinScore()).- Returns:
 - score as a similarity between 0.0 and 1.0
 
 
- 
getSimilarity
double getSimilarity(double scale)
Returns score as a similarity between 0.0 and scale. This equals scale * (getScore()-getMinScore()) / (getMaxScore()-getMinScore()).- Parameters:
 scale- maximum similarity- Returns:
 - score as a similarity between 0.0 and scale
 
 
 - 
 
 -