001/*
002 *                    BioJava development code
003 *
004 * This code may be freely distributed and modified under the
005 * terms of the GNU Lesser General Public Licence.  This should
006 * be distributed with the code.  If you do not have a copy,
007 * see:
008 *
009 *      http://www.gnu.org/copyleft/lesser.html
010 *
011 * Copyright for this code is held jointly by the individual
012 * authors.  These should be listed in @author doc comments.
013 *
014 * For more information on the BioJava project and its aims,
015 * or to join the biojava-l mailing list, visit the home page
016 * at:
017 *
018 *      http://www.biojava.org/
019 *
020 * Created on Sep 25, 2009
021 * Author: Andreas Prlic
022 *
023 */
024
025package org.biojava.nbio.structure.align.ce;
026
027import org.biojava.nbio.core.alignment.matrices.ScaledSubstitutionMatrix;
028import org.biojava.nbio.core.alignment.template.SubstitutionMatrix;
029import org.biojava.nbio.structure.*;
030import org.biojava.nbio.structure.align.model.AFP;
031import org.biojava.nbio.structure.align.model.AFPChain;
032import org.biojava.nbio.structure.align.util.AFPAlignmentDisplay;
033import org.biojava.nbio.structure.geometry.Matrices;
034import org.biojava.nbio.structure.geometry.SuperPositions;
035import org.biojava.nbio.structure.jama.Matrix;
036import org.biojava.nbio.core.sequence.compound.AminoAcidCompound;
037import org.biojava.nbio.core.sequence.compound.AminoAcidCompoundSet;
038
039import java.util.ArrayList;
040import java.util.List;
041
042import javax.vecmath.Matrix4d;
043
044
045
046/**
047 * This is based on the original Combinatorial Extension (CE) source code from 2003 or 2004 (CE version 2.3),
048 * as has been originally developed by I. Shindyalov and P.Bourne (1998).
049 * The original CE paper is available from here: <a href="http://peds.oxfordjournals.org/cgi/content/short/11/9/739">http://peds.oxfordjournals.org/cgi/content/short/11/9/739</a>.
050 *
051 * This class is a pretty much exact 1:1 port from C, where I cared about exact reproduce of the CE results
052 * and not about Java style.
053 *
054 * @author Spencer Bliven
055 * @author Andreas Prlic
056 *
057 */
058public class CeCalculatorEnhanced {
059
060        protected static final boolean isPrint = true;
061        private static final boolean showAlignmentSteps = true;
062        private static final boolean debug = true;
063
064        int[] f1;
065        int[] f2;
066        double[][]dist1;
067        double[][]dist2;
068        protected double[][]mat;
069        protected int[] bestTrace1;
070        protected int[] bestTrace2;
071        protected int[][] bestTraces1;
072        protected int[][] bestTraces2;
073        protected int nBestTrace;
074        protected int nBestTraces;
075        double[] d_ = new double[20];
076        protected int[] bestTracesN;
077        protected double bestTraceScore;
078        protected int nTrace;
079        protected double[] bestTracesScores;
080        protected int[] trace1;
081        protected int[] trace2;
082
083        protected static final  double  zThr=-0.1;
084
085        long timeStart ;
086        long timeEnd;
087        private int nAtom;
088
089        // the equivalent positions in the alignment...
090        private int[] align_se1;
091        private int[] align_se2;
092
093
094        private int alignmentPositionOrLength;
095        private int[] bestTraceLen;
096        private Matrix r;
097        private Atom t;
098        protected int nTraces;
099
100        private double z;
101        private int[] traceIndexContainer;
102
103        protected CeParameters params;
104        // SHOULD these fields be PARAMETERS?
105
106        protected static final int nIter = 1;
107        private static final boolean distAll = false;
108
109        List<MatrixListener> matrixListeners;
110
111        public static final boolean GLOBAL_ALIGN1 = false;
112        public static final boolean GLOBAL_ALIGN2 = false;
113
114        public CeCalculatorEnhanced(CeParameters params){
115                timeStart = System.currentTimeMillis();
116                dist1= new double[0][0];
117                dist2= new double[0][0];
118                this.params = params;
119                matrixListeners = new ArrayList<>();
120
121        }
122
123        /**
124         *
125         * @param afpChain A new AFPChain, which will be filled in by this function
126         * @param ca1
127         * @param ca2
128         * @return afpChain
129         * @throws StructureException
130         */
131        public AFPChain extractFragments(AFPChain afpChain,
132                        Atom[] ca1, Atom[] ca2) throws StructureException{
133
134                int nse1 = ca1.length;
135                int nse2 = ca2.length;
136
137                afpChain.setCa1Length(nse1);
138                afpChain.setCa2Length(nse2);
139
140                int traceMaxSize=nse1<nse2?nse1:nse2;
141
142                f1 = new int[nse1];
143                f2 = new int[nse2];
144
145                dist1 = initIntraDistmatrix(ca1, nse1);
146                dist2 = initIntraDistmatrix(ca2, nse2);
147
148
149                if ( debug )
150                        System.out.println("parameters: " + params);
151
152                if ( params.getScoringStrategy() == CeParameters.ScoringStrategy.SEQUENCE_CONSERVATION){
153                        if ( params.getSeqWeight() < 1)
154                                params.setSeqWeight(2);
155                }
156
157                int winSize = params.getWinSize();
158
159                int winSizeComb1 = (winSize-1)*(winSize-2)/2;
160
161                traceIndexContainer = new int[traceMaxSize];
162
163                // CE: unused code. distAll is always false and both loops do the same???
164                // CE v2.3 calls this Weight factors for trace extension
165                if(distAll ) {
166                        for(int i=0; i<traceMaxSize; i++)
167                                traceIndexContainer[i]=(i+1)*i*winSize*winSize/2+(i+1)*winSizeComb1;
168                } else {
169                        for(int i=0; i<traceMaxSize; i++) {
170                                traceIndexContainer[i]=(i+1)*i*winSize/2+(i+1)*winSizeComb1;
171
172
173                        }
174                }
175
176                // verified: a[] is set correctly.
177
178                mat = initSumOfDistances(nse1, nse2, winSize, winSizeComb1, ca1, ca2);
179
180
181
182                //              try {
183                //                      Matrix m2 = new Matrix(mat).copy();
184                //                      JPanel panel = GuiWrapper.getScaleableMatrixPanel(m2);
185                //                      JFrame frame = new JFrame();
186                //                      frame.addWindowListener(new WindowAdapter(){
187                //                              public void windowClosing(WindowEvent e){
188                //                                      JFrame f = (JFrame) e.getSource();
189                //                                      f.setVisible(false);
190                //                                      f.dispose();
191                //                              }
192                //                      });
193                //
194                //
195                //                      frame.getContentPane().add(panel);
196                //
197                //                      frame.pack();
198                //                      frame.setVisible(true);
199                //              } catch (Exception e) {
200                //                      e.printStackTrace();
201                //              }
202
203
204                // Set the distance matrix
205                //afpChain.setDistanceMatrix(new Matrix(mat.clone()));
206
207
208                //
209                //                         double rmsdThr = params.getRmsdThr();
210                //                         StringBuffer buf = new StringBuffer("  ");
211                //                         for(int i=0; i<nse2; i++)
212                //                            buf.append(String.format("%c", i%10==0?(i%100)/10+48:32));
213                //                         buf.append("\n");
214                //                         for(int i=0; i<nse1; i++) {
215                //                            buf.append(String.format("%c ", i%10==0?(i%100)/10+48:32));
216                //                            for(int j=0; j<nse2; j++)
217                //                               buf.append(String.format("%c", (mat[i][j])<rmsdThr?'+':'X'));
218                //                            //printf("%c", ((int)*(mat[i]+j)/40)>9?'*':((int)*(mat[i]+j)/40)+48);
219                //                            buf.append("\n");
220                //                         }
221                //                         buf.append("\n");
222                //
223                //                         System.out.println(buf.toString());
224                //
225
226
227                return afpChain;
228        }
229
230        /**
231         * Evaluates the distance between two atoms
232         * Several scoring functions are implemented and can be changed by calling
233         * {@link CeParameters#setScoringStrategy(Integer) setScoringStrategy()}
234         * on {@link CeParameters parameter} object this CECalculator was created with.
235         * <p>
236         * Scoring Strategies:<dl>
237         * <dt>DEFAULT_SCORING_STRATEGY</dt>
238         * <dd>Strategy of the original CE publication; CA-CA distance</dd>
239         *
240         * <dt>SIDE_CHAIN_SCORING</dt>
241         * <dd>CB-CB distance. This performs better for sheets and helices than CA.</dd>
242         *
243         * <dt>SIDE_CHAIN_ANGLE_SCORING</dt>
244         * <dd>Use the dot product (eg the cosine) of the two CA-CB vectors.</dd>
245         *
246         * <dt>CA_AND_SIDE_CHAIN_ANGLE_SCORING</dt>
247         * <dd>Equivalent to DEFAULT_SCORING_STRATEGY + SIDE_CHAIN_ANGLE_SCORING</dd>
248         * </dl>
249         *
250         *  <dt>SEQUENCE_CONSERVATION</dt>
251         * <dd>A mix between the DEFAULT_SCORING_STRATEGY and a scoring function that favors the alignment of sequence conserved positions in the alignment</dd>
252         * </dl>
253         *
254         *
255         *
256         * @param ca1 The CA of the first residue
257         * @param ca2 The CA of the second residue
258         * @return The distance between the two fragments, according to the selected
259         * scoring strategy. Lower distances are better alignments.
260         * @throws StructureException
261         */
262        private double getDistanceWithSidechain(Atom ca1, Atom ca2) throws StructureException {
263
264                if ( params.getScoringStrategy() == CeParameters.ScoringStrategy.CA_SCORING) {
265
266                        return Calc.getDistance(ca1,ca2);
267
268                }
269
270                double dist;
271                Group g1 = ca1.getGroup();
272                Atom cb1 = null;
273                if ( g1.hasAtom(StructureTools.CB_ATOM_NAME)) {
274                        cb1 = g1.getAtom(StructureTools.CB_ATOM_NAME);
275                }
276                //
277                Group g2 = ca2.getGroup();
278                Atom cb2 = null;
279                if ( g2.hasAtom(StructureTools.CB_ATOM_NAME)) {
280                        cb2 = g2.getAtom(StructureTools.CB_ATOM_NAME);
281                }
282
283
284                if ( params.getScoringStrategy() == CeParameters.ScoringStrategy.SIDE_CHAIN_SCORING) {
285
286
287                        // here we are using side chain orientation for scoring...
288
289
290                        // score type 1    consider side chain distances
291                        if ( cb1 != null && cb2 != null) {
292                                // CB distance
293                                dist = Calc.getDistance(cb1,cb2);
294                                //dist = dist / 2.;
295                        } else {
296                                dist = Calc.getDistance(ca1,ca2);
297                        }
298
299                        return dist;
300                }
301
302                else if ( params.getScoringStrategy() == CeParameters.ScoringStrategy.SIDE_CHAIN_ANGLE_SCORING){
303
304                        // score type 2 add angle info
305
306
307                        if ( cb1 != null && cb2 != null) {
308                                // If the CA were overlaid, what is the distance between the CB?
309                                // Recall c^2 = a^2 + b^2 -2ab*cos(theta), so this is a function of angle
310                                Atom c1 = Calc.subtract(cb1, ca1);
311                                Atom c2 = Calc.subtract(cb2, ca2);
312                                Atom newA = Calc.subtract(c2, c1);
313                                dist = Calc.amount(newA);
314                        }  else {
315                                //dist += Calc.getDistance(ca1,ca2);
316                                dist = 0;
317                        }
318
319                        return dist;
320
321                }
322                else if ( params.getScoringStrategy() == CeParameters.ScoringStrategy.CA_AND_SIDE_CHAIN_ANGLE_SCORING){
323
324                        // score type 3
325                        // CA distance + cos(angle)
326                        dist = 0;
327                        if ( cb1 != null && cb2 != null) {
328                                Atom cacb1 = Calc.subtract(cb1, ca1);
329                                Atom cacb2 = Calc.subtract(cb2, ca2);
330                                Atom newA = Calc.subtract(cacb2, cacb1);
331                                //System.out.format("CACB 1: %s\nCACB 2: %s\ndiff: %s\nd: %f\n",cacb1.toString(),cacb2.toString(),newA.toString(),Calc.amount(newA));
332                                dist += Calc.amount(newA);
333                        }
334                        dist += Calc.getDistance(ca1,ca2);
335
336                        return dist;
337
338                } else if ( params.getScoringStrategy() == CeParameters.ScoringStrategy.SEQUENCE_CONSERVATION){
339                        if ( cb1 != null && cb2 != null) {
340                                // CB distance
341                                dist = Calc.getDistance(cb1,cb2);
342                                //dist = dist / 2.;
343                        } else {
344                                dist = Calc.getDistance(ca1,ca2);
345                        }
346                        return dist;
347
348
349                }
350                else {
351                        // unsupported scoring scheme
352                        return Calc.getDistance(ca1,ca2);
353                }
354        }
355
356        /** build up intramolecular distance matrix dist1 & dist2
357         *
358         * @param ca
359         * @param nse
360         * @return
361         * @throws StructureException
362         */
363        private double[][] initIntraDistmatrix(Atom[] ca, int nse) throws StructureException
364        {
365
366
367                double[][] intraDist = new double[nse][nse];
368
369                //
370                for(int ise1=0; ise1<nse; ise1++)  {
371
372                        for(int ise2=0; ise2<nse; ise2++)  {
373                                intraDist[ise1][ise2] = getDistanceWithSidechain(ca[ise1], ca[ise2]);
374
375                        }
376                }
377                return intraDist;
378        }
379
380
381        public double[][] initSumOfDistances(int nse1, int nse2, int winSize, int  winSizeComb1, Atom[] ca1, Atom[] ca2) {
382
383                double d;
384
385                double[][] mat   = new double[nse1][nse2];
386
387                // init the initial mat[] array.
388                // at this stage mat contains the sum of the distances of fragments of the matrices dist1, dist
389                for(int ise1=0; ise1<nse1; ise1++) {
390                        for(int ise2=0; ise2<nse2; ise2++) {
391
392                                mat[ise1][ise2]=-1.0;
393
394                                if(ise1>nse1-winSize || ise2>nse2-winSize) continue;
395
396                                d=0.0;
397                                // this sums up over the distances of the fragments
398                                for(int is1=0; is1<winSize-2; is1++)
399                                        for(int is2=is1+2; is2<winSize; is2++) {
400                                                //System.out.println("pos1 :" +  (ise1+is1) + " " + (ise1+is2) +  " " + (ise2+is1) + " " + (ise2+is2));
401                                                // is this abs or floor? check!
402                                                d+=Math.abs(dist1[ise1+is1][ise1+is2]-dist2[ise2+is1][ise2+is2]);
403                                        }
404                                mat[ise1][ise2]=d/winSizeComb1;
405
406                                //System.out.println("mat ["+ise1+"]["+ise2+"]="+mat[ise1][ise2]);
407                        }
408
409                }
410
411                // verified: mat[][] probably ok.
412
413                return mat;
414        }
415
416
417
418
419
420
421        @SuppressWarnings("unused")
422        public void traceFragmentMatrix( AFPChain afpChain,
423                        Atom[] ca1, Atom[] ca2) {
424
425                double rmsdThr = params.getRmsdThr();
426
427
428                double oldBestTraceScore=10000.0;
429                bestTraceScore = 100.0;
430                nBestTrace=0;
431                int nBestTrace0 = 0;
432                int winSize = params.getWinSize();
433                int winSizeComb1=(winSize-1)*(winSize-2)/2;
434                boolean distAll = false;
435
436                int winSizeComb2=distAll?winSize*winSize:winSize;
437                double rmsdThrJoin = params.getRmsdThrJoin();
438
439                double z0;
440
441                //double bestTraceZScore=-1.0;
442
443                int nse1 = ca1.length;
444                int nse2 = ca2.length;
445
446                //System.out.println("nse1 :" +nse1 + " nse2: " + nse2);
447
448                int traceMaxSize=nse1<nse2?nse1:nse2;
449
450                bestTrace1 = new int [traceMaxSize];
451                bestTrace2 = new int [traceMaxSize];
452                trace1     = new int [traceMaxSize];
453                trace2     = new int [traceMaxSize];
454
455                int[] traceIndex     = new int [traceMaxSize];
456                int[] traceIterLevel = new int [traceMaxSize];
457
458                int ise11;
459                int ise12;
460                int ise21;
461                int ise22;
462
463                int ise1;
464                int ise2;
465
466                int gapMax=params.getMaxGapSize();
467
468                int iterDepth;
469                if ( gapMax > 0){
470                        iterDepth       =gapMax*2+1;
471                } else {
472                        iterDepth = traceMaxSize;
473                }
474                double[][] traceScore = new double[traceMaxSize][iterDepth];
475
476                nTraces =0;
477                long tracesLimit=(long)5e7;
478                double score =-1;
479                double score0 = -1;
480                double score1 = -1 ;
481                double score2 = -1;
482
483                int mse1;
484                int mse2;
485                int jgap;
486                int jdir;
487                int jse1=0;
488                int jse2=0;
489
490                int bestTracesMax=30;
491                bestTraces1 = new int[bestTracesMax][traceMaxSize];
492                bestTraces2 = new int[bestTracesMax][ traceMaxSize];
493                bestTracesN=new int [bestTracesMax];
494                bestTracesScores = new double [bestTracesMax];
495                for(int it=0; it<bestTracesMax; it++) {
496                        bestTracesN[it]=0;
497                        bestTracesScores[it]=100;
498                }
499
500                nBestTraces=0;
501                int newBestTrace=0;
502
503                double traceTotalScore=0;
504                double traceScoreMax =0;
505                double userRMSDMax = params.getMaxOptRMSD();
506                int kse1;
507                int kse2;
508
509                iterLoop:
510                        for(int iter=0; iter<nIter; iter++) {
511
512                                if(iter>2) {
513                                        if(oldBestTraceScore<=bestTraceScore) break;
514                                }
515                                oldBestTraceScore=bestTraceScore;
516
517                                if(iter==1) {
518                                        z0=zStrAlign(winSize, nBestTrace, bestTraceScore,
519                                                        bestTrace1[nBestTrace]+winSize-bestTrace1[0]+
520                                                        bestTrace2[nBestTrace]+winSize-bestTrace2[0]-
521                                                        nBestTrace*2*winSize);
522                                        if(z0<zThr) break;
523                                        nBestTrace0=nBestTrace;
524                                        nBestTrace=0;
525                                        bestTraceScore=100.0;
526
527                                        nTraces=0;
528                                }
529
530
531                                if(iter==0) {
532                                        ise11=0; ise12=nse1;
533                                        ise21=0; ise22=nse2;
534
535                                }
536                                else {
537                                        if(iter==1) {
538                                                ise11=bestTrace1[0]; ise12=bestTrace1[0]+1;
539                                                ise21=bestTrace2[0]; ise22=bestTrace2[0]+1;
540                                        }
541                                        else {
542                                                ise11=bestTrace1[0]-1; ise12=bestTrace1[0]+2;
543                                                ise21=bestTrace2[0]-1; ise22=bestTrace2[0]+2;
544                                        }
545                                        if(ise11<0) ise11=0;
546                                        if(ise12>nse1) ise12=nse1;
547                                        if(ise21<0) ise21=0;
548                                        if(ise22>nse2) ise22=nse2;
549                                }
550
551                                //System.out.println("ise1Loop: " + ise11 + " " + ise12 + " " + ise21 + " " + ise22);
552                                ise1Loop:
553                                        for(int ise1_=ise11; ise1_<ise12; ise1_++) {
554                                                ise2Loop:
555                                                        for(int ise2_=ise21; ise2_<ise22; ise2_++) {
556
557                                                                ise1=ise1_;
558                                                                ise2=ise2_;
559                                                                if(iter>1 && ise1==ise11+1 && ise2==ise21+1) continue ise2Loop;
560
561                                                                //if(ise2==ise21)       System.out.println(String.format("(%d, %d)",ise1, nTraces));
562
563
564                                                                if(iter==0 && (ise1>nse1-winSize*(nBestTrace-1) ||
565                                                                                ise2>nse2-winSize*(nBestTrace-1))) continue ise2Loop;
566
567                                                                if(mat[ise1][ise2]<0.0) continue ise2Loop;
568                                                                if(mat[ise1][ise2]>rmsdThr) continue ise2Loop;
569                                                                if (mat[ise1][ise2]>userRMSDMax) continue ise2Loop;
570                                                                nTrace=0;
571                                                                trace1[nTrace]=ise1;
572                                                                trace2[nTrace]=ise2;
573                                                                traceIndex[nTrace]=0;
574                                                                traceIterLevel[nTrace]=0;
575
576                                                                score0=mat[ise1][ise2];
577
578
579                                                                nTrace++;
580                                                                boolean isTraceUp=true;
581                                                                int traceIndex_=0;
582
583                                                                traceLoop:
584                                                                        while(nTrace>0) {
585
586                                                                                kse1=trace1[nTrace-1]+winSize;
587                                                                                kse2=trace2[nTrace-1]+winSize;
588
589                                                                                //System.out.println("isTraceUp " + isTraceUp + " " + nTrace + " " + kse1 + " " + kse2);
590
591                                                                                while(true) {
592                                                                                        if(kse1>nse1-winSize-1) break;
593                                                                                        if(kse2>nse2-winSize-1) break;
594                                                                                        if(mat[kse1][kse2]>=0.0) break;
595                                                                                        kse1++;
596                                                                                        kse2++;
597                                                                                }
598
599
600                                                                                traceIndex_=-1;
601
602                                                                                if(isTraceUp) {
603
604                                                                                        int nBestExtTrace=nTrace;
605                                                                                        double bestExtScore=100.0;
606
607
608                                                                                        // extension of the alignment path
609                                                                                        // condition 4, 5
610                                                                                        itLoop:
611                                                                                                for(int it=0; it<iterDepth; it++) {
612
613                                                                                                        jgap=(it+1)/2;
614                                                                                                        jdir=(it+1)%2;
615
616                                                                                                        if(jdir==0) {
617                                                                                                                mse1=kse1+jgap;
618                                                                                                                mse2=kse2;
619                                                                                                        }
620                                                                                                        else {
621                                                                                                                mse1=kse1;
622                                                                                                                mse2=kse2+jgap;
623                                                                                                        }
624
625                                                                                                        if(mse1>nse1-winSize-1) continue itLoop;
626                                                                                                        if(mse2>nse2-winSize-1) continue itLoop;
627
628                                                                                                        if(mat[mse1][mse2]<0.0)     continue itLoop;
629                                                                                                        if(mat[mse1][mse2]>rmsdThr) continue itLoop;
630                                                                                                        if(mat[mse1][mse2]>userRMSDMax) continue itLoop;
631
632                                                                                                        nTraces++;
633                                                                                                        if(nTraces>tracesLimit) {
634
635                                                                                                                return;
636                                                                                                        }
637
638                                                                                                        score=0.0;
639
640                                                                                                        //                                                                                                      if(!distAll) {
641                                                                                                        //System.out.println("getting score " + mse1 + " " + mse2 + " " + winSize + " " + jgap + " " + jdir + " " + it + " " + kse1 + " " + kse2);
642                                                                                                        score = getScoreFromDistanceMatrices(mse1,mse2,winSize);
643                                                                                                        //System.out.println("got score: " + score);
644                                                                                                        score1=score/(nTrace*winSize);
645
646                                                                                                        //                                                                                                      } else {
647                                                                                                        //                                                                                                              // all dist
648                                                                                                        //                                                                                                              for(int itrace=0; itrace<nTrace; itrace++) {
649                                                                                                        //                                                                                                                      for(int is1=0; is1<winSize; is1++)
650                                                                                                        //                                                                                                                              for(int is2=0; is2<winSize; is2++)
651                                                                                                        //                                                                                                                                      score+=Math.abs(dist1[trace1[itrace]+is1][mse1+is2]-
652                                                                                                        //                                                                                                                                                      dist2[trace2[itrace]+is1][mse2+is2]);
653                                                                                                        //                                                                                                              }
654                                                                                                        //                                                                                                              score1=score/(nTrace*winSize*winSize);
655                                                                                                        //                                                                                                      }
656
657
658                                                                                                        //System.out.println("up: " + nTrace + " "  + score + " " + score0 + " " + score1 + " " + winSize + " " + traceIndex_ + " " + it + " ");
659                                                                                                        if(score1>rmsdThrJoin)
660                                                                                                                continue itLoop;
661                                                                                                        if(score1>userRMSDMax)
662                                                                                                                continue itLoop;
663                                                                                                        score2=score1;
664
665                                                                                                        // this just got checked, no need to check again..
666                                                                                                        //if(score2>rmsdThrJoin)
667                                                                                                        //      continue itLoop;
668
669                                                                                                        if(nTrace>nBestExtTrace || (nTrace==nBestExtTrace &&
670                                                                                                                        score2<bestExtScore)) {
671                                                                                                                //System.out.println("setting traceindex to " + it + " " + score2);
672                                                                                                                bestExtScore=score2;
673                                                                                                                nBestExtTrace=nTrace;
674                                                                                                                traceIndex_=it;
675                                                                                                                traceScore[nTrace-1][traceIndex_]=score1;
676                                                                                                        }
677
678                                                                                                }
679                                                                                }
680
681                                                                                if(traceIndex_!=-1) {
682                                                                                        jgap=(traceIndex_+1)/2;
683                                                                                        jdir=(traceIndex_+1)%2;
684                                                                                        if(jdir==0) {
685                                                                                                jse1=kse1+jgap;
686                                                                                                jse2=kse2;
687                                                                                        }
688                                                                                        else {
689                                                                                                jse1=kse1;
690                                                                                                jse2=kse2+jgap;
691                                                                                        }
692
693                                                                                        if(iter==0){
694
695                                                                                                score1=(traceScore[nTrace-1][traceIndex_]*winSizeComb2*nTrace+
696                                                                                                                mat[jse1][jse2]*winSizeComb1)/(winSizeComb2*nTrace+
697                                                                                                                                winSizeComb1);
698
699                                                                                                score2 = getScore2(jse1, jse2, traceScore, traceIndex_, traceIndex, winSizeComb1, winSizeComb2, score0, score1);
700
701                                                                                                if(score2>rmsdThrJoin)
702                                                                                                        traceIndex_=-1;
703                                                                                                else if ( score2 > userRMSDMax)
704                                                                                                        traceIndex_=-1;
705                                                                                                else {
706                                                                                                        traceScore[nTrace-1][traceIndex_]=score2;
707
708                                                                                                        traceTotalScore=score2;
709                                                                                                }
710
711                                                                                        }
712                                                                                        else {
713                                                                                                if(traceScoreMax>rmsdThrJoin && nBestTrace>=nBestTrace0)
714                                                                                                        traceIndex_=-1;
715                                                                                                traceTotalScore=traceScoreMax;
716                                                                                        }
717                                                                                }
718
719                                                                                //System.out.println("middle: " + nTrace + " " + score + " " + score0 + " " + score1 + "  " + score2  + " " + traceIndex_);
720
721                                                                                if(traceIndex_==-1) {
722                                                                                        //System.out.println("continue traceLoop " + nTrace);
723                                                                                        //if(iterLevel==1) break;
724                                                                                        nTrace--;
725                                                                                        isTraceUp=false;
726                                                                                        continue traceLoop;
727                                                                                }
728                                                                                else {
729                                                                                        traceIterLevel[nTrace-1]++;
730                                                                                        trace1[nTrace]=jse1;
731                                                                                        trace2[nTrace]=jse2;
732                                                                                        traceIndex[nTrace]=traceIndex_;
733                                                                                        traceIterLevel[nTrace]=0;
734                                                                                        nTrace++;
735                                                                                        isTraceUp=true;
736
737                                                                                        if(nTrace>nBestTrace ||
738                                                                                                        (nTrace==nBestTrace  &&
739                                                                                                        bestTraceScore>traceTotalScore)) {
740
741                                                                                                for(int itrace=0; itrace<nTrace; itrace++) {
742                                                                                                        bestTrace1[itrace]=trace1[itrace];
743                                                                                                        bestTrace2[itrace]=trace2[itrace];
744                                                                                                }
745                                                                                                bestTraceScore=traceTotalScore;
746                                                                                                nBestTrace=nTrace;
747                                                                                        }
748
749                                                                                        if(iter==0) {
750                                                                                                //System.out.println("doing iter0 " + newBestTrace + " " + traceTotalScore + " " + bestTracesMax);
751                                                                                                newBestTrace = doIter0(newBestTrace,traceTotalScore, bestTracesMax);
752
753
754                                                                                        }
755                                                                                }
756                                                                        }
757                                                        }
758                                        }
759
760                                if ( isPrint) {
761                                        System.out.println("fragment length: " + params.getWinSize());
762                                        System.out.println("ntraces : " + nTraces );
763                                }
764
765
766
767                        }
768
769                //              try {
770                //                      Matrix m2 = new Matrix(traceScore).copy();
771                //                      JPanel panel = GuiWrapper.getScaleableMatrixPanel(m2);
772                //                      JFrame frame = new JFrame();
773                //                      frame.addWindowListener(new WindowAdapter(){
774                //                              public void windowClosing(WindowEvent e){
775                //                                      JFrame f = (JFrame) e.getSource();
776                //                                      f.setVisible(false);
777                //                                      f.dispose();
778                //                              }
779                //                      });
780                //
781                //
782                //                      frame.getContentPane().add(panel);
783                //
784                //                      frame.pack();
785                //                      frame.setVisible(true);
786                //              } catch (Exception e) {
787                //                      e.printStackTrace();
788                //              }
789
790
791                if ( params.isShowAFPRanges()){
792                        System.out.println("fragment length: " + params.getWinSize());
793                        System.out.println("ntraces : " + nTraces );
794
795                }
796
797        }
798
799        protected double getScore2(int jse1, int jse2, double[][] traceScore, int traceIndex_,int[] traceIndex,int winSizeComb1, int winSizeComb2, double score0, double score1 ) {
800
801
802
803                /*double score2=
804                        ((nTrace>1?traceScore[nTrace-2][traceIndex[nTrace-1]]:score0)
805                 *a[nTrace-1]+score1*(a[nTrace]-a[nTrace-1]))/a[nTrace];
806                 */
807                double val = 0;
808                if ( nTrace>1)
809                        val =traceScore[nTrace-2][traceIndex[nTrace-1]];
810                else
811                        val = score0;
812
813                double score2 =  (val * traceIndexContainer[nTrace-1]+score1*(traceIndexContainer[nTrace]-traceIndexContainer[nTrace-1]))/traceIndexContainer[nTrace];
814
815                //System.out.println("check: score0 " + score0 + " score 1 " + score1 + " sc2: " + score2 + " val: " + val + " nTrace:" + nTrace+ " " +  traceIndexContainer[nTrace-1] + " " +  traceIndexContainer[nTrace-1] + " " + traceIndexContainer[nTrace] );
816
817                return score2;
818
819
820        }
821
822        protected int doIter0(int newBestTrace, double traceTotalScore, double bestTracesMax) {
823
824
825                // only do the whole method if this criteria is fulfilled...
826                if(nTrace>bestTracesN[newBestTrace] ||
827                                (nTrace==bestTracesN[newBestTrace] &&
828                                bestTracesScores[newBestTrace]>traceTotalScore)) {
829
830
831                        for(int itrace=0; itrace<nTrace; itrace++) {
832                                bestTraces1[newBestTrace][itrace]=trace1[itrace];
833                                bestTraces2[newBestTrace][itrace]=trace2[itrace];
834                                bestTracesN[newBestTrace]=nTrace;
835                                bestTracesScores[newBestTrace]=traceTotalScore;
836                                //System.out.println("bestTracesScrores ["+newBestTrace+"]=" +traceTotalScore);
837                        }
838
839                        if(nTrace>nBestTrace) nBestTrace=nTrace;
840
841                        if(nBestTraces<bestTracesMax) {
842                                nBestTraces++;
843                                newBestTrace++;
844                        }
845
846                        if(nBestTraces==bestTracesMax) {
847                                //System.out.println("nBestTraces == bestTracesmax " + nBestTraces);
848                                newBestTrace=0;
849                                double scoreTmp=bestTracesScores[0];
850                                int nTraceTmp=bestTracesN[0];
851                                for(int ir=1; ir<nBestTraces; ir++) {
852                                        if(bestTracesN[ir]<nTraceTmp ||
853                                                        (bestTracesN[ir]==nTraceTmp &&
854                                                        scoreTmp<bestTracesScores[ir])) {
855                                                nTraceTmp=bestTracesN[ir];
856                                                scoreTmp=bestTracesScores[ir];
857                                                newBestTrace=ir;
858                                                //System.out.println("setting new bestTracesScore to " + ir + " " + scoreTmp);
859                                        }
860                                }
861                        }
862                }
863
864                //System.out.println("iter0 : " + newBestTrace + " " + bestTracesN[newBestTrace] + " " + traceTotalScore + " " + nTrace);
865
866
867
868                /*
869z=zStrAlign(winSize, nTrace, traceTotalScore,
870trace1[nTrace-1]-trace1[0]+trace2[nTrace-1]-trace2[0]-
8712*(nTrace-1)*winSize);
872if(z>bestTraceZScore) {
873for(int itrace=0; itrace<nTrace; itrace++) {
874bestTrace1[itrace]=trace1[itrace];
875bestTrace2[itrace]=trace2[itrace];
876}
877bestTraceZScore=z;
878bestTraceScore=*(traceScore[nTrace-2]+traceIndex_);
879nBestTrace=nTrace;
880}
881                 */
882                return newBestTrace;
883
884        }
885
886
887        protected double getScoreFromDistanceMatrices(int mse1, int mse2,int winSize) {
888
889                double score = 0;
890                // (winSize) "best" dist
891
892                // reduce sign. values to C code.. 6 digits..
893
894                for(int itrace=0; itrace<nTrace; itrace++) {
895                        score+=  Math.abs(dist1[trace1[itrace]][mse1]-
896                                        dist2[trace2[itrace]][mse2]);
897
898                        score+=  Math.abs(dist1[trace1[itrace]+winSize-1]
899                                        [mse1+winSize-1]-
900                                        dist2[trace2[itrace]+winSize-1][mse2+winSize-1]);
901
902                        for(int id=1; id<winSize-1; id++)
903                                score+=  Math.abs(dist1[trace1[itrace]+id][mse1+winSize-1-id]-
904                                                dist2[trace2[itrace]+id][mse2+winSize-1-id]);
905
906                }
907
908                return score;
909        }
910
911        public void nextStep( AFPChain afpChain,
912                        Atom[] ca1, Atom[] ca2) throws StructureException{
913
914
915                if(nBestTrace>0) {
916                        checkBestTraces(afpChain,ca1,ca2);
917                } else {
918                        noBestTrace();
919                }
920
921                convertAfpChain(afpChain, ca1, ca2);
922                AFPAlignmentDisplay.getAlign(afpChain, ca1, ca2);
923        }
924
925
926
927        // this part is modified from the original CeCalculator
928        @SuppressWarnings("unused")
929        private void checkBestTraces( AFPChain afpChain,
930                        Atom[] ca1, Atom[] ca2) throws StructureException{
931
932                z=0.0;
933
934
935                int nGaps;
936                int winSize = params.getWinSize();
937                int nse1 = ca1.length;
938                int nse2 = ca2.length;
939                int traceMaxSize=nse1<nse2?nse1:nse2;
940                int idir;
941
942
943                align_se1=new int [nse1+nse2];
944                align_se2=new int [nse1+nse2];
945                alignmentPositionOrLength = 0;
946
947                // we now support alignment using any particular atoms..
948
949                Atom[] strBuf1 = new Atom[traceMaxSize];
950                Atom[] strBuf2 = new Atom[traceMaxSize];
951
952                double rmsdNew;
953
954
955
956                // removing some loops that are run in orig CE
957                // and which did not do anything
958                if ( debug ){
959                        checkPrintRmsdNew(traceMaxSize, winSize, ca1, ca2);
960                }
961
962                double rmsd=100.0;
963
964                int iBestTrace=0;
965
966                for(int ir=0; ir<nBestTraces; ir++) {
967                        if(bestTracesN[ir]!=nBestTrace) continue;
968
969                        rmsdNew = getRMSDForBestTrace(ir, strBuf1, strBuf2, bestTracesN,bestTraces1, bestTrace2,winSize,ca1,ca2);
970                        if ( isPrint)
971                                System.out.println(String.format("%d %d %d %.2f", ir, bestTracesN[ir], nBestTrace, rmsdNew));
972
973                        if(rmsd>rmsdNew) {
974                                iBestTrace=ir;
975                                rmsd=rmsdNew;
976                                //System.out.println(" iBestTrace:" + iBestTrace + " new rmsd = " + rmsd);
977                        }
978                }
979                for(int it=0; it<bestTracesN[iBestTrace]; it++) {
980                        bestTrace1[it]=bestTraces1[iBestTrace][it];
981                        bestTrace2[it]=bestTraces2[iBestTrace][it];
982                }
983
984                //System.out.println("iBestTrace: "+iBestTrace+" = bestTracesScores " + bestTracesScores[iBestTrace]);
985
986                nBestTrace=bestTracesN[iBestTrace];
987
988                bestTraceScore=bestTracesScores[iBestTrace];
989
990
991                //printf("\nOptimizing gaps...\n");
992
993                int[] traceLen=new int [traceMaxSize];
994                bestTraceLen=new int [traceMaxSize];
995
996
997                int strLen=0;
998
999                int jt;
1000                strLen=0;
1001                nGaps=0;
1002                nTrace=nBestTrace;
1003
1004                for(jt=0; jt<nBestTrace; jt++) {
1005                        trace1[jt]=bestTrace1[jt];
1006                        trace2[jt]=bestTrace2[jt];
1007                        traceLen[jt]=winSize;
1008
1009                        if(jt<nBestTrace-1) {
1010                                nGaps+=bestTrace1[jt+1]-bestTrace1[jt]-winSize+
1011                                                bestTrace2[jt+1]-bestTrace2[jt]-winSize;
1012                        }
1013                }
1014                nBestTrace=0;
1015                for(int it=0; it<nTrace; ) {
1016                        int cSize=traceLen[it];
1017                        for(jt=it+1; jt<nTrace; jt++) {
1018                                if(trace1[jt]-trace1[jt-1]-traceLen[jt-1]!=0 ||
1019                                                trace2[jt]-trace2[jt-1]-traceLen[jt-1]!=0) break;
1020                                cSize+=traceLen[jt];
1021                        }
1022                        bestTrace1[nBestTrace]=trace1[it];
1023                        bestTrace2[nBestTrace]=trace2[it];
1024                        bestTraceLen[nBestTrace]=cSize;
1025                        nBestTrace++;
1026                        strLen+=cSize;
1027                        it=jt;
1028                }
1029
1030
1031                int is=0;
1032                for(jt=0; jt<nBestTrace; jt++) {
1033                        for(int i=0; i<bestTraceLen[jt]; i++) {
1034                                setStrBuf(strBuf1,is+i,ca1,bestTrace1[jt]+i );
1035                                setStrBuf(strBuf2,is+i,ca2,bestTrace2[jt]+i);
1036                        }
1037                        is+=bestTraceLen[jt];
1038                }
1039                //sup_str(strBuf1, strBuf2, strLen, d_);
1040
1041                rmsd=calc_rmsd(strBuf1, strBuf2, strLen,true,showAlignmentSteps);
1042
1043                if ( isPrint)
1044                        System.out.println("got first rmsd: " + rmsd);
1045                boolean isCopied=false;
1046
1047                outer_loop:
1048                        for(int it=1; it<nBestTrace; it++) {
1049
1050                                /* not needed...
1051                        int igap;
1052                        if(bestTrace1[it]-bestTrace1[it-1]-bestTraceLen[it-1]>0) igap=0;
1053                        if(bestTrace2[it]-bestTrace2[it-1]-bestTraceLen[it-1]>0) igap=1;
1054                                 */
1055
1056
1057                                boolean wasBest=false;
1058                                main_loop:
1059                                        for(idir=-1; idir<=1; idir+=2) {
1060                                                if(wasBest) break;
1061
1062                                                inner_loop:
1063                                                        for(int idep=1; idep<=winSize/2; idep++) {
1064
1065                                                                if(!isCopied)
1066                                                                        for(jt=0; jt<nBestTrace; jt++) {
1067                                                                                trace1[jt]=bestTrace1[jt];
1068                                                                                trace2[jt]=bestTrace2[jt];
1069                                                                                traceLen[jt]=bestTraceLen[jt];
1070                                                                        }
1071                                                                isCopied=false;
1072
1073                                                                traceLen[it-1]+=idir;
1074                                                                traceLen[it]-=idir;
1075                                                                trace1[it]+=idir;
1076                                                                trace2[it]+=idir;
1077
1078                                                                is=0;
1079                                                                for(jt=0; jt<nBestTrace; jt++) {
1080                                                                        for(int i=0; i<traceLen[jt]; i++) {
1081                                                                                if(ca1[trace1[jt]+i].getX()>1e10 || ca2[trace2[jt]+i].getX()>1e10)
1082                                                                                        continue main_loop;
1083                                                                                strBuf1[is+i]=ca1[trace1[jt]+i];
1084                                                                                strBuf2[is+i]=ca2[trace2[jt]+i];
1085                                                                        }
1086                                                                        is+=traceLen[jt];
1087                                                                }
1088                                                                //sup_str(strBuf1, strBuf2, strLen, d_);
1089                                                                rmsdNew=calc_rmsd(strBuf1, strBuf2, strLen, true, false);
1090                                                                //System.out.println(String.format("step %d %d %d %.2f old: %.2f", it, idir, idep, rmsdNew, rmsd));
1091                                                                if(rmsdNew<rmsd) {
1092
1093                                                                        for(jt=0; jt<nBestTrace; jt++) {
1094                                                                                bestTrace1[jt]  = trace1[jt];
1095                                                                                bestTrace2[jt]  = trace2[jt];
1096                                                                                bestTraceLen[jt]= traceLen[jt];
1097                                                                        }
1098                                                                        isCopied=true;
1099                                                                        wasBest=true;
1100                                                                        rmsd=rmsdNew;
1101                                                                        continue inner_loop;
1102                                                                }
1103                                                                // AP
1104                                                                //bad_ca: break;
1105                                                                continue main_loop;
1106                                                        }
1107                                        }
1108                        }
1109                //if ( showAlignmentSteps)
1110                rmsdNew=calc_rmsd(strBuf1, strBuf2, strLen,true, showAlignmentSteps);
1111                if ( isPrint)
1112                        System.out.println("rmsdNew: " + rmsdNew + " rmsd " + rmsd);
1113                afpChain.setTotalRmsdIni(rmsdNew);
1114                afpChain.setTotalLenIni(strBuf1.length);
1115
1116
1117                nAtom = strLen;
1118
1119                System.out.println("zStrAlign: " + winSize + " strLen " + strLen  + " s/w " + (strLen/winSize) + " " + bestTraceScore + " " + nGaps);
1120                z=zStrAlign(winSize, strLen/winSize, bestTraceScore, nGaps);
1121
1122                if(params.isShowAFPRanges()) {
1123                        System.out.println("win size: " + winSize + " strLen/winSize: " + strLen/winSize + " best trace score: " + String.format("%.2f",bestTraceScore) + " nr gaps: " + nGaps + " nr residues: " + nAtom);
1124
1125                        System.out.println(String.format("size=%d rmsd=%.2f z=%.1f gaps=%d(%.1f%%) comb=%d",
1126                                        nAtom, rmsd, z, nGaps, nGaps*100.0/nAtom,
1127                                        nTraces));
1128
1129                        System.out.println("Best Trace, before optimization");
1130                        for(int k=0; k<nBestTrace; k++)
1131                                System.out.println(String.format("(%d,%d,%d) ", bestTrace1[k]+1, bestTrace2[k]+1,
1132                                                bestTraceLen[k]));
1133
1134                }
1135
1136                // start to convert CE internal datastructure to generic AFPChain one...
1137                List<AFP> afpSet = new ArrayList<>();
1138                for (int afp=0;afp<nBestTrace;afp++){
1139                        // fill in data from nBestTrace into AFP
1140
1141                        AFP afpI = new AFP();
1142
1143                        afpI.setFragLen(bestTraceLen[afp]);
1144                        afpI.setP1(bestTrace1[afp]+1);
1145                        afpI.setP2(bestTrace2[afp]+1);
1146
1147                        afpSet.add( afpI);
1148                }
1149
1150                afpChain.setAfpSet(afpSet);
1151
1152
1153                //System.out.println("z:"+z + " zThr" + zThr+ " bestTraceScore " + bestTraceScore + " " + nGaps );
1154                if(z>=zThr) {
1155                        nGaps = optimizeSuperposition(afpChain,nse1, nse2, strLen, rmsd, ca1, ca2,nGaps,strBuf1,strBuf2);
1156                        //            if(isPrint) {
1157                        //              /*
1158                        //              FILE *f=fopen("homologies", "a");
1159                        //              fprintf(f, "%s(%d) %s(%d) %3d %4.1f %4.1f %d(%d) ",
1160                        //                      name1, nse1, name2, nse2, nAtom, rmsd, z,
1161                        //                      nGaps, nGaps*100/nAtom);
1162                        //              for(int k=0; k<nBestTrace; k++)
1163                        //                fprintf(f, "(%d,%d,%d) ", bestTrace1[k]+1, bestTrace2[k]+1,
1164                        //                        bestTraceLen[k]);
1165                        //              fprintf(f, "\n");
1166                        //              fclose(f);
1167                        //              */
1168                        //            }
1169                }
1170                else {
1171                        int lali_x_ = 0;
1172                        for(int k=0; k<nBestTrace; k++) {
1173                                for(int l=0; l<bestTraceLen[k]; l++) {
1174                                        align_se1[alignmentPositionOrLength+l]=bestTrace1[k]+l;
1175                                        align_se2[alignmentPositionOrLength+l]=bestTrace2[k]+l;
1176                                }
1177                                lali_x_+=bestTraceLen[k];
1178                                if(k<nBestTrace-1) {
1179                                        if(bestTrace1[k]+bestTraceLen[k]!=bestTrace1[k+1])
1180                                                for(int l=bestTrace1[k]+bestTraceLen[k]; l<bestTrace1[k+1]; l++) {
1181                                                        align_se1[alignmentPositionOrLength]=l;
1182                                                        align_se2[alignmentPositionOrLength]=-1;
1183                                                        alignmentPositionOrLength++;
1184                                                }
1185                                        if(bestTrace2[k]+bestTraceLen[k]!=bestTrace2[k+1])
1186                                                for(int l=bestTrace2[k]+bestTraceLen[k]; l<bestTrace2[k+1]; l++) {
1187                                                        align_se1[alignmentPositionOrLength]=-1;
1188                                                        align_se2[alignmentPositionOrLength]=l;
1189                                                        alignmentPositionOrLength++;
1190                                                }
1191                                }
1192                        }
1193                        nAtom=lali_x_;
1194                }
1195
1196                timeEnd = System.currentTimeMillis();
1197                long time_q=(timeEnd-timeStart);
1198
1199                double gapsP = ( nGaps*100.0/nAtom) ;
1200                if(isPrint) {
1201                        String msg = String.format("Alignment length = %d Rmsd = %.2fA Z-Score = %.1f Gaps = %d(%.1f%%)",nAtom,rmsd,z,nGaps, gapsP);
1202                        System.out.println(msg + " CPU = " + time_q);
1203                }
1204
1205                //      if ( params.isShowAFPRanges()){
1206
1207                // this is actually the final alignment...
1208                System.out.println("Best Trace: (index1,index2,len)");
1209                for(int k=0; k<nBestTrace; k++)
1210                        System.out.println(
1211                                        String.format("(%d,%d,%d) ", bestTrace1[k]+1, bestTrace2[k]+1, bestTraceLen[k]));
1212
1213
1214
1215                //      }
1216
1217                afpChain.setCalculationTime(time_q);
1218                afpChain.setGapLen(nGaps);
1219
1220                int[] optLen = new int[]{nAtom};
1221                afpChain.setOptLen(optLen);
1222                afpChain.setOptLength(nAtom);
1223                afpChain.setAlnLength(alignmentPositionOrLength);
1224
1225                afpChain.setProbability(z);
1226
1227
1228        }
1229
1230        /** set the Atoms for a particular residue position.
1231         * Requires that atom.getParent returns the correct group!
1232         * take care during cloning of atoms. Best to use StructureTools.cloneCaAtoms();
1233         *
1234         * @param strBuf
1235         * @param i
1236         * @param ca
1237         * @param j
1238         */
1239        private void setStrBuf(Atom[] strBuf, int i, Atom[] ca, int j) {
1240                // TODO Auto-generated method stub
1241                //TODO
1242                Group parent = ca[j].getGroup();
1243                int pos = 0;
1244                String atomName = ca[j].getName();
1245
1246                Atom a = null;
1247
1248                a= parent.getAtom(atomName);
1249                if ( a != null){
1250                        strBuf[i]=a;
1251                }
1252                else {
1253                        // probably a GLY and no CB was found...
1254                        //e.printStackTrace();
1255                }
1256                strBuf[i+pos] = a;
1257                pos++;
1258
1259
1260
1261        }
1262
1263        // TODO:  consider all requested Atoms?
1264        private double getRMSDForBestTrace(int ir, Atom[] strBuf1, Atom[] strBuf2,
1265                        int[] bestTracesN2, int[][] bestTraces12, int[] bestTrace22,
1266                        int winSize,Atom[] ca1, Atom[] ca2 ) throws StructureException {
1267                int is=0;
1268                for(int jt=0; jt<bestTracesN[ir]; jt++) {
1269                        for(int i=0; i<winSize; i++) {
1270
1271                                setStrBuf(strBuf1, is+i, ca1, bestTraces1[ir][jt]+i);
1272                                setStrBuf(strBuf2, is+i, ca2, bestTraces2[ir][jt]+i);
1273                        }
1274                        is+=winSize;
1275                }
1276                //sup_str(strBuf1, strBuf2, bestTracesN[ir]*winSize, d_);
1277                double rmsdNew=calc_rmsd(strBuf1, strBuf2, bestTracesN[ir]*winSize, true, false);
1278                return rmsdNew;
1279
1280        }
1281
1282
1283
1284
1285
1286
1287        /** calc initial RMSD for bestTrace1 in debug only
1288         *
1289         */
1290        private void checkPrintRmsdNew(int traceMaxSize, int winSize, Atom[] ca1, Atom[] ca2) throws StructureException{
1291
1292                int is = 0;
1293                // calc initial RMSD for bestTrace1
1294                Atom[] strBuf1 = new Atom[traceMaxSize];
1295                Atom[] strBuf2 = new Atom[traceMaxSize];
1296                for(int jt=0; jt<nBestTrace; jt++) {
1297                        for(int i=0; i<winSize; i++) {
1298                                setStrBuf(strBuf1, is+i, ca1, bestTrace1[jt]+i );
1299                                setStrBuf(strBuf2, is+i, ca2, bestTrace2[jt]+i );
1300                        }
1301                        is+=winSize;
1302                }
1303
1304                //sup_str(strBuf1, strBuf2, nBestTrace*winSize, d_);
1305                double rmsdNew=calc_rmsd(strBuf1, strBuf2, nBestTrace*winSize, true, false);
1306                //afpChain.setTotalRmsdIni(rmsdNew);
1307
1308
1309                if ( isPrint){
1310                        System.out.println("rmsdNew after trace: " +rmsdNew);
1311
1312                        for(int k=0; k<nBestTrace; k++)
1313                                System.out.println(String.format("(%d,%d,%d) ", bestTrace1[k]+1, bestTrace2[k]+1,8));
1314                }
1315
1316                if ( isPrint){
1317                        System.out.println("best traces: " + nBestTraces);
1318                }
1319
1320
1321        }
1322
1323
1324
1325
1326
1327
1328        private static char getOneLetter(Group g){
1329
1330                if (g==null) return StructureTools.UNKNOWN_GROUP_LABEL;
1331
1332                return StructureTools.get1LetterCode(g.getPDBName());
1333        }
1334
1335
1336
1337        private int optimizeSuperposition(AFPChain afpChain, int nse1, int nse2, int strLen, double rmsd, Atom[] ca1, Atom[] ca2,int nGaps,
1338                        Atom[] strBuf1, Atom[] strBuf2 ) throws StructureException {
1339
1340                //System.out.println("optimizing Superimposition...");
1341
1342                //nAtom=strLen;
1343                // optimization on superposition
1344                Atom[] ca3=new Atom[nse2];
1345
1346                double rmsdLen  = 0.0;
1347
1348                // this flag tests if the RMSDLen has been assigned.
1349                // this is to enforce that the alignment ends up
1350                // smaller than 95% of the original alignment.
1351                // +/-
1352                boolean isRmsdLenAssigned=false;
1353                int nAtomPrev=-1;
1354
1355                double oRmsdThr = params.getORmsdThr();
1356
1357                double distanceIncrement = params.getDistanceIncrement();
1358                double maxUserRMSD = params.getMaxOptRMSD();
1359                nAtom=0;
1360                int counter = -1;
1361
1362                int maxNrIterations = params.getMaxNrIterationsForOptimization();
1363
1364                //double[][] mat = new double[nse1][nse2];
1365                while((nAtom<strLen*0.95 ||
1366                                (isRmsdLenAssigned && rmsd<rmsdLen*1.1 && nAtomPrev!=nAtom)) && ( counter< maxNrIterations)) {
1367
1368                        counter++;
1369                        if ( debug)
1370                                System.out.println("nAtom: " + nAtom + " " + nAtomPrev + " " + rmsdLen + " " + isRmsdLenAssigned + " strLen:" + strLen + " nse1,nse2:" + nse1 + " " + nse2);
1371                        nAtomPrev=nAtom;
1372                        oRmsdThr += distanceIncrement;
1373
1374                        rot_mol(ca2, ca3, nse2, r,t);
1375
1376                        for(int ise1=0; ise1<nse1; ise1++) {
1377                                for(int ise2=0; ise2<nse2; ise2++) {
1378
1379                                        //mat[ise1][ise2]=-0.001;
1380
1381                                        // this needs to be a parameter...
1382
1383
1384                                        double dist = getDistanceWithSidechain(ca1[ise1], ca3[ise2]);
1385                                        mat[ise1][ise2] = oRmsdThr - dist;
1386
1387                                        //double distold = Calc.getDistance(ca1[ise1],ca3[ise2]);
1388                                        //double scoreOld  = oRmsdThr - distold ;
1389                                        //mat[ise1][ise2] = scoreOld;
1390                                        //mat[ise1][ise2] = oRmsdThr - Calc.getDistance(ca1[ise1],ca3[ise2]);
1391
1392                                        //if ( counter == 0 &&  ise1 == ise2) {
1393
1394                                        // System.out.println("mat[" + ise1 + "][" + ise2 + "] " + mat[ise1][ise2] + " scoreOld:" + scoreOld + " oRmsdThr: " + oRmsdThr +" dist: " + dist + " distold:" + distold );
1395                                        // }
1396
1397
1398                                }
1399                        }
1400
1401                        mat = notifyMatrixListener(mat);
1402
1403                        if ( params.getScoringStrategy() == CeParameters.ScoringStrategy.SEQUENCE_CONSERVATION){
1404                                mat = updateMatrixWithSequenceConservation(mat,ca1,ca2, params);
1405                        }
1406
1407                        double gapOpen = params.getGapOpen();
1408                        double gapExtension = params.getGapExtension();
1409
1410                        // by default we always do local alignment
1411                        double score = dpAlign( nse1, nse2, gapOpen , gapExtension , GLOBAL_ALIGN1, GLOBAL_ALIGN2);
1412
1413                        if (debug) {
1414                                System.out.println("iter: "+ counter + "  score:"  + score + " " + " nAtomPrev: " + nAtomPrev + " nAtom:" + nAtom + " oRmsdThr: " + oRmsdThr);
1415
1416                                for (int i=0 ; i<alignmentPositionOrLength ; i++){
1417                                        if ( align_se2[i] == 172 || align_se2[i] == 173) {
1418                                                System.out.println("BREAK POINT IS ALIGNED!!!!");
1419                                                System.out.println(align_se2[i-1] + " " + align_se2[i] + " " + align_se2[i+1]);
1420                                        }
1421                                }
1422                        }
1423                        afpChain.setAlignScore(score);
1424
1425
1426                        nAtom=0; nGaps=0;
1427                        for(int ia=0; ia<alignmentPositionOrLength; ia++) {
1428                                if(align_se1[ia]!=-1 && align_se2[ia]!=-1) {
1429
1430                                        strBuf1[nAtom]=ca1[align_se1[ia]];
1431                                        strBuf2[nAtom]=ca2[align_se2[ia]];
1432
1433                                        nAtom++;
1434
1435                                }
1436                                else {
1437                                        nGaps++;
1438                                }
1439                        }
1440
1441                        for ( int i =0 ; i < strBuf1.length; i++){
1442                                if ( strBuf1[i] == null)
1443                                        break;
1444                                System.out.print(strBuf1[i].getGroup().getChemComp().getOneLetterCode());
1445                        }
1446                        System.out.println();
1447
1448                        if(nAtom<4) continue;
1449
1450                        //sup_str(strBuf1, strBuf2, nAtom, _d);
1451                        // here we don't store the rotation matrix for the user!
1452                        rmsd= calc_rmsd(strBuf1, strBuf2, nAtom,false, false);
1453                        if ( isPrint )
1454                                System.out.println("iter: " + counter + " nAtom " + nAtom + " rmsd: " + rmsd);
1455                        //afpChain.setTotalRmsdOpt(rmsd);
1456                        //System.out.println("rmsd: " + rmsd);
1457
1458                        if(!(nAtom<strLen*0.95) && (!isRmsdLenAssigned)) {
1459                                rmsdLen=rmsd;
1460                                isRmsdLenAssigned=true;
1461                        }
1462                        //System.out.println(String.format("nAtom %d %d rmsd %.1f", nAtom, nAtomPrev, rmsd));
1463
1464
1465                        afpChain.setBlockRmsd(new double[]{rmsd});
1466                        afpChain.setOptRmsd(new double[]{rmsd});
1467                        afpChain.setTotalRmsdOpt(rmsd);
1468                        afpChain.setChainRmsd(rmsd);
1469
1470                        if ( rmsd >= maxUserRMSD) {
1471                                break;
1472                        }
1473
1474                }
1475
1476
1477
1478                //System.out.println("done optimizing");
1479                /*
1480                nAtom=0; nGaps=0;
1481                for(int ia=0; ia<lcmp; ia++)
1482                if(align_se1[ia]!=-1 && align_se2[ia]!=-1) {
1483                if(ca1[align_se1[ia]].X<1e10 && ca2[align_se2[ia]].X<1e10) {
1484                strBuf1[nAtom]=ca1[align_se1[ia]];
1485                strBuf2[nAtom]=ca2[align_se2[ia]];
1486                nAtom++;
1487                }
1488                }
1489                else {
1490                nGaps++;
1491                }
1492
1493                sup_str(strBuf1, strBuf2, nAtom, _d);
1494                rmsd=calc_rmsd(strBuf1, strBuf2, nAtom, _d);
1495                 */
1496                nBestTrace=0;
1497                boolean newBestTrace=true;
1498                for(int ia=0; ia<alignmentPositionOrLength; ia++) {
1499                        if(align_se1[ia]!=-1 && align_se2[ia]!=-1) {
1500                                //System.out.println(" " +align_se1[ia] + " " + align_se2[ia]);
1501
1502                                if(newBestTrace) {
1503                                        bestTrace1[nBestTrace]=align_se1[ia];
1504                                        bestTrace2[nBestTrace]=align_se2[ia];
1505                                        bestTraceLen[nBestTrace]=0;
1506                                        newBestTrace=false;
1507                                        nBestTrace++;
1508                                }
1509                                bestTraceLen[nBestTrace-1]++;
1510
1511                        }
1512                        else {
1513                                newBestTrace=true;
1514                        }
1515                }
1516
1517                return nGaps;
1518
1519                // end of optimization on superposition
1520
1521        }
1522
1523        /** Modifies an alignment matrix by favoring the alignment of similar and identical amino acids and penalizing the alignment of unrelated ones.
1524         *
1525         * @param max alignment matrix
1526         * @param ca1 Atoms for protein 1
1527         * @param ca2 Atoms for Protein 2
1528         * @param params alignment parameters
1529         * @return modified alignment matrix
1530         */
1531        public static double[][] updateMatrixWithSequenceConservation(double[][] max, Atom[] ca1, Atom[] ca2, CeParameters params) {
1532                Matrix origM = new Matrix(max);
1533
1534                SubstitutionMatrix<AminoAcidCompound> substMatrix =
1535                                params.getSubstitutionMatrix();
1536
1537                int internalScale = 1;
1538                if ( substMatrix instanceof ScaledSubstitutionMatrix) {
1539                        ScaledSubstitutionMatrix scaledMatrix = (ScaledSubstitutionMatrix) substMatrix;
1540                        internalScale = scaledMatrix.getScale();
1541                }
1542
1543
1544                AminoAcidCompoundSet set = AminoAcidCompoundSet.getAminoAcidCompoundSet();
1545
1546                for (int i = 0 ; i < origM.getRowDimension() ; i++){
1547                        for ( int j =0; j < origM.getColumnDimension() ; j ++ ) {
1548                                double val = origM.get(i,j);
1549                                Atom a1 = ca1[i];
1550                                Atom a2 = ca2[j];
1551
1552                                AminoAcidCompound ac1 =
1553                                                set.getCompoundForString(a1.getGroup().getChemComp().getOneLetterCode());
1554                                AminoAcidCompound ac2 =
1555                                                set.getCompoundForString(a2.getGroup().getChemComp().getOneLetterCode());
1556
1557
1558                                if ( ac1 == null || ac2 == null)
1559                                        continue;
1560
1561                                short aaScore = substMatrix.getValue(ac1,ac2);
1562
1563                                double weightedScore = (aaScore / internalScale) * params.getSeqWeight();
1564
1565
1566                                val += weightedScore;
1567                                origM.set(i,j,val);
1568
1569                        }
1570                }
1571                max = origM.getArray();
1572
1573                //SymmetryTools.showMatrix((Matrix)origM.clone(), "in optimizer "  + loopCount  );
1574                //SymmetryTools.showMatrix(origM, "iteration  matrix " + loopCount + " after");
1575
1576                return max;
1577        }
1578
1579        private double[][] notifyMatrixListener(double[][] mat2) {
1580                for (MatrixListener li : matrixListeners) {
1581                        mat2 = li.matrixInOptimizer(mat2);
1582                }
1583                return mat2;
1584        }
1585
1586        private boolean[][] notifyBreakFlagListener(boolean[][] brkFlag){
1587                for (MatrixListener li : matrixListeners) {
1588                        brkFlag = li.initializeBreakFlag(brkFlag);
1589                }
1590                return brkFlag;
1591        }
1592
1593        public void addMatrixListener(MatrixListener li){
1594                matrixListeners.add(li);
1595        }
1596
1597
1598        private double dpAlign(int nSeq1, int nSeq2, double gapI, double gapE,
1599                        boolean isGlobal1, boolean isGlobal2) {
1600
1601
1602                // isGlobal1,isGlobal2 are always false...
1603                // i.e. we do local alignments by default
1604
1605                int i, j, iStart, jStart, iMax, jMax, k;
1606                boolean hasGapExtensionPenalty=(gapE!=0.0?true:false);
1607                double  sum_ret, sum_brk;
1608
1609                boolean[][] brk_flg=new boolean [nSeq1][nSeq2];
1610                for(i=0; i<nSeq1; i++) brk_flg[i]=new boolean [nSeq2];
1611
1612                brk_flg = notifyBreakFlagListener(brk_flg);
1613
1614                // ge = true here...
1615                /*
1616                  for(i=0; i<nSeq1; i++)
1617                   {
1618                     printf("\n");
1619                     for(j=0; j<nSeq2; j++)
1620                       {
1621                         printf("%4d", (int)(*(mat[i]+j)*10));
1622                       }
1623                   }
1624                 printf("\n\n\n");
1625                 */
1626                int[][] tracebackMatrix1 = new int[nSeq1][nSeq2];
1627                int[][] tracebackMatrix2 = new int[nSeq1][nSeq2];
1628
1629                //              System.out.println("===== " + mat[0][0]);
1630                //              for ( i = 39 ; i < 42 ;i ++){
1631                //                      //System.out.print(" " + i + " ");
1632                //                      for (  j = 155 ; j < 157 ; j++) {
1633                //                              System.out.print(String.format("[%s %s %.2f] ",i,j,mat[i][j]));
1634                //                      }
1635                //                      System.out.println();
1636                //              }
1637                //              System.out.println("----");
1638                //
1639                //              for ( i = 69 ; i < 72 ;i ++){
1640                //                      //System.out.println(" " + i + " ");
1641                //                      for (  j = 170 ; j < 175 ; j++) {
1642                //                              System.out.print(String.format("[%s %s %.2f] ",i,j,mat[i][j]));
1643                //                      }
1644                //                      System.out.println();
1645                //              }
1646
1647                //double sum = 0;
1648                if(!hasGapExtensionPenalty)
1649                {
1650                        for(i=nSeq1-1; i>=0; i--)
1651                                for(j=nSeq2-1; j>=0; j--)
1652                                {
1653                                        double sum ;
1654                                        brk_flg[i][j]=false;
1655                                        if(j<nSeq2-1 && i<nSeq1-1)
1656                                        {
1657                                                sum=mat[i+1][j+1];
1658                                        }
1659                                        else
1660                                        {
1661                                                sum=0.0;
1662                                                if((isGlobal1 && i!=nSeq1-1) || (isGlobal2 && j!=nSeq2-1))
1663                                                        sum=-gapI;
1664                                        }
1665                                        if(j+1<nSeq2)
1666                                                for(k=i+2; k<nSeq1; k++)
1667                                                {
1668                                                        if(mat[k][j+1]-gapI>sum)
1669                                                                sum=mat[k][j+1]-gapI;
1670                                                }
1671                                        if(i+1<nSeq1)
1672                                                for(k=j+2; k<nSeq2; k++)
1673                                                {
1674                                                        if(mat[i+1][k]-gapI>sum)
1675                                                                sum=mat[i+1][k]-gapI;
1676                                                }
1677                                        sum+=mat[i][j];
1678                                        sum_brk=(isGlobal1?-gapI:0.0)+(isGlobal2?-gapI:0.0);
1679                                        if(sum<sum_brk)
1680                                        {
1681                                                sum=sum_brk;
1682                                                brk_flg[i][j]=true;
1683                                                //System.out.println("break at: " + i + " " + j);
1684                                        }
1685                                        mat[i][j]=sum;
1686                                }
1687                }
1688                else
1689                {
1690                        for(i=nSeq1-1; i>=0; i--)
1691                                for(j=nSeq2-1; j>=0; j--)
1692                                {
1693                                        double maxSum ;
1694                                        brk_flg[i][j]=false;
1695                                        if(j<nSeq2-1 && i<nSeq1-1)
1696                                        {
1697                                                // any row/column which is not the last
1698                                                maxSum=mat[i+1][j+1];
1699                                                tracebackMatrix1[i][j] = i+1;
1700                                                tracebackMatrix2[i][j] = j+1;
1701                                        }
1702                                        else
1703                                        {
1704                                                // sets the last row and column
1705                                                maxSum=0.0;
1706                                                if(isGlobal1 && i!=nSeq1-1) maxSum=-gapI-gapE*(nSeq1-i-1);
1707                                                if(isGlobal2 && j!=nSeq2-1) maxSum=-gapI-gapE*(nSeq2-j-1);
1708                                                tracebackMatrix1[i][j] = -1;
1709                                                tracebackMatrix2[i][j] = -1;
1710
1711                                        }
1712
1713                                        // do only for rows/columns which are not the last:
1714                                        if(j+1<nSeq2)
1715                                                for(k=i+2; k<nSeq1; k++) {
1716                                                        if(mat[k][j+1]-gapI-gapE*(k-i-1)>maxSum) {
1717                                                                maxSum=mat[k][j+1]-gapI-gapE*(k-i-1);
1718                                                                tracebackMatrix1[i][j] = k;
1719                                                                tracebackMatrix2[i][j] = j+1;
1720
1721                                                        }
1722                                                }
1723                                        if(i+1<nSeq1)
1724                                                for(k=j+2; k<nSeq2; k++) {
1725                                                        if(mat[i+1][k]-gapI-gapE*(k-j-1)>maxSum) {
1726                                                                maxSum=mat[i+1][k]-gapI-gapE*(k-j-1);
1727                                                                tracebackMatrix1[i][j] = i+1;
1728                                                                tracebackMatrix2[i][j] = k;
1729
1730                                                        }
1731                                                }
1732
1733                                        maxSum+= mat[i][j];
1734
1735
1736                                        sum_brk=(isGlobal1?(-gapI-gapE*(nSeq1-1-i)):0.0)+(isGlobal2?(-gapI-gapE*(nSeq2-1-j)):0.0);
1737                                        if(maxSum<sum_brk)
1738                                        {
1739                                                maxSum=sum_brk;
1740                                                brk_flg[i][j]=true;
1741                                        }
1742                                        mat[i][j]=maxSum;
1743                                }
1744                }
1745
1746
1747
1748
1749                iStart=0; jStart=0; alignmentPositionOrLength=0;
1750                // no nc-end penalty - begin
1751                sum_ret=mat[0][0];
1752
1753                // look for the highest score in mat[i][j]
1754                // TODO: move this up ??
1755
1756                for(i=0; i<nSeq1; i++)
1757                        for(j=0; j<nSeq2; j++)
1758                        {
1759                                if(i==0 && j==0) continue;
1760                                double sum=mat[i][j];
1761                                if(isGlobal1) sum+=-gapI-gapE*i;
1762                                if(isGlobal2) sum+=-gapI-gapE*j;
1763                                if(sum>sum_ret)
1764                                {
1765                                        sum_ret=sum;
1766                                        iStart=i; jStart=j;
1767                                }
1768                        }
1769
1770
1771                // ok we got the maximum score in sum_ret and the start position in iStart, jStart
1772
1773                //System.out.println("start at " + is + "  " + js);
1774                //for(k=0; k<is; k++) align1[k]=-1;
1775                //for(k=0; k<js; k++) align2[k]=-1;
1776                // no nc-end penalty - end
1777                int prevGapEnd = -1;
1778                //
1779                for(i=iStart, j=jStart; i<nSeq1 && j<nSeq2; i++, j++)
1780                {
1781                        iMax=i; jMax=j;
1782                        double localMaxScore=mat[i][j];
1783                        if(!hasGapExtensionPenalty)
1784                        {
1785                                for(k=i+1; k<nSeq1; k++)
1786                                        if(mat[k][j]-gapI>localMaxScore)
1787                                        {
1788                                                iMax=k; jMax=j;
1789                                                localMaxScore=mat[k][j]-gapI;
1790                                        }
1791
1792                                for(k=j+1; k<nSeq2; k++)
1793                                        if(mat[i][k]-gapI>localMaxScore)
1794                                        {
1795                                                iMax=i; jMax=k;
1796                                                localMaxScore=mat[i][k]-gapI;
1797                                        }
1798                        }
1799                        else
1800                        {
1801                                for(k=i+1; k<nSeq1; k++) {
1802                                        if(mat[k][j]-gapI-gapE*(k-i)>localMaxScore)
1803                                        {
1804                                                System.out.println("     gap1 " + alignmentPositionOrLength + " " + k + " " + j + " " + localMaxScore + "<" +(mat[k][j]-gapI-gapE*(k-i)));
1805                                                iMax=k; jMax=j;
1806                                                localMaxScore=mat[k][j]-gapI-gapE*(k-i);
1807                                        }
1808                                }
1809                                for(k=j+1; k<nSeq2; k++) {
1810                                        if(mat[i][k]-gapI-gapE*(k-j)>localMaxScore)
1811                                        {
1812                                                System.out.println("     gap2 " + alignmentPositionOrLength + " " + k + " " + i + " " + localMaxScore + "<"+ (mat[i][k]-gapI-gapE*(k-j)));
1813                                                iMax=i; jMax=k;
1814                                                localMaxScore=mat[i][k]-gapI-gapE*(k-j);
1815                                        }
1816                                }
1817                        }
1818
1819                        //boolean doubleGap = false;
1820                        boolean gapPosition = false;
1821                        if ( i != iMax || j != jMax ) {
1822                                int l1 = iMax - i;
1823                                int l2 = jMax - j ;
1824                                System.out.println(String.format("FOUND GAP AT: lcmp:%d l1: %d l2: %d | i:%d iMax: %d j:%d jMax:%d ",alignmentPositionOrLength, l1,l2, i, iMax , j, jMax));
1825                                if ( l1 > 0) {
1826                                        System.out.println(" -- G1 : " + alignmentPositionOrLength + " ->" + (alignmentPositionOrLength + l1) + " " );
1827                                        gapPosition = true;
1828                                }
1829                                if ( l2 > 0) {
1830                                        System.out.println(" -- G2 : " + alignmentPositionOrLength + " ->" + (alignmentPositionOrLength + l2) +  " ");
1831                                        gapPosition = true;
1832                                }
1833                                if ( prevGapEnd == alignmentPositionOrLength -1){
1834                                        // double gap!
1835                                        System.out.println( "  !! FOUND DOUBLE GAP AT: "+  alignmentPositionOrLength + " | "+ i+ " " + iMax + " " + j + " " + jMax + " " + String.format("%f", mat[i][j]) + " " +   getTraceBack(tracebackMatrix1,tracebackMatrix2,i,j));
1836                                        //doubleGap = true;
1837
1838                                        //                                                                              if ( i != iMax){
1839                                        //                                                                                      int pos = align_se1[ alignmentPositionOrLength -1];
1840                                        //                                                                                      align_se1[ alignmentPositionOrLength -1] = -1;
1841                                        //                                                                                      align_se1[ alignmentPositionOrLength ] = pos;
1842                                        //                                                                                      align_se2[ alignmentPositionOrLength ] = -1;
1843                                        //                                                                              } else {
1844                                        //                                                                                      int pos = align_se2[ alignmentPositionOrLength -1];
1845                                        //                                                                                      align_se2[ alignmentPositionOrLength -1] = -1;
1846                                        //                                                                                      align_se2[ alignmentPositionOrLength ] = pos;
1847                                        //                                                                                      align_se1[ alignmentPositionOrLength ] = -1;
1848                                        //                                                                              }
1849                                        //
1850                                        //                                                                              alignmentPositionOrLength++;
1851                                }
1852                        }
1853
1854
1855
1856                        //System.out.println(" iMax " + iMax + " jMax " +  jMax);
1857                        // set the gap positions:
1858                        //lcmp:53 i:41 j:173 imax:70 jmax:173
1859                        System.out.println(String.format("  lcmp:%d i:%d j:%d imax:%d jmax:%d score: %.2f",alignmentPositionOrLength,i,j, iMax, jMax, mat[iMax][jMax]));
1860
1861
1862                        for(k=i; k<iMax; k++, i++) {
1863                                align_se1[alignmentPositionOrLength]=k;
1864                                align_se2[alignmentPositionOrLength]=-1;
1865
1866
1867                                alignmentPositionOrLength++;
1868                        }
1869
1870                        for(k=j; k<jMax; k++, j++) {
1871                                align_se1[alignmentPositionOrLength]=-1;
1872                                align_se2[alignmentPositionOrLength]=k;
1873
1874
1875                                alignmentPositionOrLength++;
1876                        }
1877
1878
1879                        align_se1[alignmentPositionOrLength]=iMax;
1880                        align_se2[alignmentPositionOrLength]=jMax;
1881
1882
1883
1884                        if ( gapPosition)
1885                                prevGapEnd = alignmentPositionOrLength;
1886                        alignmentPositionOrLength++;
1887
1888                        if(brk_flg[i][j]) {
1889                                //System.out.println("hit break flag at: " + i + "  " + j + " sum " + sum_ret + " lcmp " + alignmentPositionOrLength);
1890                                break;
1891
1892                        }
1893                }
1894
1895
1896                return sum_ret;
1897        }
1898
1899
1900
1901
1902        private String getTraceBack(int[][] tracebackMatrix1,
1903                        int[][] tracebackMatrix2, int i, int j) {
1904
1905
1906                if ( tracebackMatrix1[i][j] == -1 )
1907                        return "";
1908                if ( tracebackMatrix2[i][j] == -1 )
1909                        return "";
1910
1911                int t1 = tracebackMatrix1[i][j];
1912                int t2 = tracebackMatrix2[i][j];
1913
1914
1915                String s = "[ "+t1+","+t2+"] ";
1916
1917                return s + getTraceBack(tracebackMatrix1, tracebackMatrix2, t1, t2);
1918
1919
1920        }
1921
1922        private void rot_mol(Atom[] caA, Atom[] caB, int nse2, Matrix m , Atom shift) throws StructureException{
1923
1924
1925
1926                for(int l=0; l<nse2; l++) {
1927                        Atom a = caA[l];
1928                        Group g = (Group)a.getGroup().clone();
1929                        //Group g = (Group)a.getParent();
1930
1931                        Calc.rotate( g, m);
1932                        Calc.shift(  g, shift);
1933                        caB[l] = g.getAtom(a.getName());
1934                }
1935        }
1936
1937        //void rot_mol(XYZ *molA, XYZ *molB, int nAtom, double d_[20] ) {
1938        //                        double dx, dy, dz;
1939        //                        for(int l=0; l<nAtom; l++) {
1940        //                          if(molA[l].X<1e10) {
1941        //                            dx=molA[l].X;
1942        //                            dy=molA[l].Y;
1943        //                            dz=molA[l].Z;
1944        //                            molB[l].X=dx*d_[0]+dy*d_[1]+dz*d_[2]+d_[9];
1945        //                            molB[l].Y=dx*d_[3]+dy*d_[4]+dz*d_[5]+d_[10];
1946        //                            molB[l].Z=dx*d_[6]+dy*d_[7]+dz*d_[8]+d_[11];
1947        //                          }
1948        //                          else {
1949        //                            molB[l]=molA[l];
1950        //                          }
1951        //                        }
1952        //                      }
1953        //
1954
1955
1956        /** superimpose and get rmsd
1957         *
1958         * @param pro1
1959         * @param pro2
1960         * @param strLen
1961         * @param storeTransform
1962         * @param show
1963         * @return RMSD
1964         * @throws StructureException
1965         */
1966        public double calc_rmsd(Atom[] pro1, Atom[] pro2, int strLen, boolean storeTransform, boolean show) throws StructureException {
1967
1968                Atom[] cod1 = getAtoms(pro1,  strLen,false);
1969                Atom[] cod2 = getAtoms(pro2,  strLen,true);
1970
1971                Matrix4d trans = SuperPositions.superpose(Calc.atomsToPoints(cod1),
1972                                Calc.atomsToPoints(cod2));
1973
1974                Matrix matrix = Matrices.getRotationJAMA(trans);
1975                Atom shift = Calc.getTranslationVector(trans);
1976
1977                if ( debug){
1978                        matrix.print(3,3);
1979                }
1980
1981                if ( storeTransform) {
1982                        r = matrix;
1983                        t = shift;
1984                }
1985                for (Atom a : cod2)
1986                        Calc.transform(a.getGroup(), trans);
1987
1988                //Calc.rotate(a,r);
1989                //Calc.shift(a,t);
1990                //              if ( show){
1991                //                      StructureAlignmentJmol jmol = new StructureAlignmentJmol();
1992                //
1993                //                      jmol.setAtoms(cod1);
1994                //                      jmol.evalString("select * ; wireframe off; spacefill off;  backbone on; color chain; select ligand;color cpk; wireframe 40;spacefill 120;  ");
1995                //                      jmol.setTitle("calCaRmsd - pdb1");
1996                //
1997                //                      StructureAlignmentJmol jmol2 = new StructureAlignmentJmol();
1998                //                      jmol2.setAtoms(cod2);
1999                //                      jmol2.evalString("select * ; wireframe off; spacefill off;  backbone on; color chain; select ligand;color cpk; wireframe 40;spacefill 120;  ");
2000                //                      jmol2.setTitle("calCaRmsd - pdb2");
2001                //              }
2002                return Calc.rmsd(cod1, cod2);
2003
2004        }
2005
2006        /**
2007         * Copies the first length atoms from the input array
2008         * @param ca The array to copy
2009         * @param length the number of atoms to copy
2010         * @param clone If true, preform a deep copy, cloning the underlying Groups
2011         * @return An array with the first length items of ca, possibly cloning the Atoms.
2012         * @throws StructureException
2013         */
2014        private Atom[] getAtoms(Atom[] ca,  int length, boolean clone) throws StructureException{
2015
2016                List<Atom> atoms = new ArrayList<>();
2017                for ( int i = 0 ; i < length ; i++){
2018
2019                        Atom a;
2020                        if ( clone ){
2021                                Group g = (Group)ca[i].getGroup().clone();
2022                                a = g.getAtom(ca[i].getName());
2023                        }
2024                        else {
2025                                a = ca[i];
2026                        }
2027                        atoms.add(a);
2028                }
2029                return atoms.toArray(new Atom[atoms.size()]);
2030        }
2031
2032
2033
2034        private void noBestTrace(){
2035
2036                if(isPrint) {
2037                        timeEnd = System.currentTimeMillis();
2038                        long time_q=(timeEnd-timeStart);
2039
2040                        String msg = String.format("size=0 time=%d comb=%d\n", (int)(time_q), nTraces);
2041                        System.out.println(msg);
2042                }
2043        }
2044
2045
2046
2047        private double zToP(double z) {
2048                int ind=(int)(z/0.1);
2049                if(ind<0) ind=0;
2050                if(ind>149) ind=149;
2051                return(tableZtoP[ind]);
2052        }
2053        ///////////////////////////////////////////////////////////////////////////
2054        private         double pToZ(double p) {
2055                int ind=(int)(-Math.log10(p)*3.0);
2056                if(ind<0) ind=0;
2057                if(ind>149) ind=149;
2058                return(tablePtoZ[ind]);
2059        }
2060        ///////////////////////////////////////////////////////////////////////////
2061        private double zByZ(double z1, double z2) {
2062                double p1=zToP(z1);
2063                double p2=zToP(z2);
2064                return(pToZ(p1*p2));
2065        }
2066
2067        protected double zStrAlign(int winSize, int nTrace, double score, int nGaps) {
2068                double z1=zScore(winSize, nTrace, score);
2069                double z2=zGaps(winSize, nTrace, nGaps);
2070                return(zByZ(z1, z2));
2071        }
2072
2073        double zScore(int winSize, int nTrace, double score) {
2074
2075                if(winSize==8) {
2076
2077                        if(nTrace<1) return(0.0);
2078
2079                        double scoreAv_, scoreSd_;
2080                        if(nTrace<21) {
2081                                scoreAv_=scoreAv8[nTrace-1];
2082                                scoreSd_=scoreSd8[nTrace-1];
2083                        }
2084                        else {
2085                                scoreAv_=0.209874*nTrace+2.944714;
2086                                scoreSd_=0.039487*nTrace+0.675735;
2087                        }
2088                        if(score>scoreAv_) return(0.0);
2089                        return((scoreAv_-score)/scoreSd_);
2090                }
2091
2092                if(winSize==6) {
2093
2094                        if(nTrace<1) return(0.0);
2095
2096                        double scoreAv_, scoreSd_;
2097                        if(nTrace<21) {
2098                                scoreAv_=scoreAv6[nTrace-1];
2099                                scoreSd_=scoreSd6[nTrace-1];
2100                        }
2101                        else {
2102                                scoreAv_=0.198534*nTrace+2.636477;
2103                                scoreSd_=0.040922*nTrace+0.715636;
2104                        }
2105                        if(score>scoreAv_) return(0.0);
2106                        return((scoreAv_-score)/scoreSd_);
2107                }
2108
2109                return(0.0);
2110
2111        }
2112        ///////////////////////////////////////////////////////////////////////////
2113        double zGaps(int winSize, int nTrace, int nGaps) {
2114
2115                if(nTrace<2) return(0.0);
2116                double scoreAv_, scoreSd_;
2117
2118                if(winSize==8) {
2119                        if(nTrace<21) {
2120                                scoreAv_=gapsAv8[nTrace-1];
2121                                scoreSd_=gapsSd8[nTrace-1];
2122                        }
2123                        else {
2124                                scoreAv_=14.949173*nTrace-14.581193;
2125                                scoreSd_=2.045067*nTrace+13.191095;
2126                        }
2127                        if(nGaps>scoreAv_) return(0.0);
2128                        return((scoreAv_-nGaps)/scoreSd_);
2129                }
2130
2131                if(winSize==6) {
2132                        if(nTrace<21) {
2133                                scoreAv_=gapsAv6[nTrace-1];
2134                                scoreSd_=gapsSd6[nTrace-1];
2135                        }
2136                        else {
2137                                scoreAv_=13.574490*nTrace-13.977223;
2138                                scoreSd_=1.719977*nTrace+19.615014;
2139                        }
2140                        if(nGaps>scoreAv_) return(0.0);
2141                        return((scoreAv_-nGaps)/scoreSd_);
2142                }
2143
2144                return(0.0);
2145        }
2146
2147        private static final double[] scoreAv8={2.54, 2.51, 2.72, 3.01, 3.31, 3.61, 3.90, 4.19, 4.47, 4.74,
2148                4.99, 5.22, 5.46, 5.70, 5.94, 6.13, 6.36, 6.52, 6.68, 6.91};
2149        private static final double[] scoreSd8={1.33, 0.88, 0.73, 0.71, 0.74, 0.80, 0.86, 0.92, 0.98, 1.04,
2150                1.08, 1.10, 1.15, 1.19, 1.23, 1.25, 1.32, 1.34, 1.36, 1.45};
2151        private static final double[] gapsAv8={0.00, 11.50, 23.32, 35.95, 49.02, 62.44, 76.28, 90.26,
2152                104.86, 119.97, 134.86, 150.54, 164.86, 179.57, 194.39,
2153                209.38, 224.74, 238.96, 253.72, 270.79};
2154        private static final double[] gapsSd8={0.00, 9.88, 14.34, 17.99, 21.10, 23.89, 26.55, 29.00, 31.11,
2155                33.10, 35.02, 36.03, 37.19, 38.82, 41.04, 43.35, 45.45,
2156                48.41, 50.87, 52.27};
2157        private static final double[] scoreAv6={1.98, 1.97, 2.22, 2.54, 2.87, 3.18, 3.48, 3.77, 4.05, 4.31,
2158                4.57, 4.82, 5.03, 5.24, 5.43, 5.64, 5.82, 6.02, 6.21, 6.42};
2159        private static final double[] scoreSd6={1.15, 0.73, 0.63, 0.64, 0.71, 0.80, 0.87, 0.95, 1.01, 1.07,
2160                1.13, 1.19, 1.22, 1.25, 1.28, 1.32, 1.35, 1.39, 1.45, 1.50};
2161        private static final double[] gapsAv6={0.00, 10.12, 20.25, 31.29, 42.95, 55.20, 67.53, 80.15,
2162                93.30, 106.47, 120.52, 134.38, 148.59, 162.58, 176.64,
2163                191.23, 204.12, 218.64, 231.82, 243.43};
2164        private static final double[] gapsSd6={0.00, 9.80, 14.44, 18.14, 21.35, 24.37, 27.00, 29.68, 32.22,
2165                34.37, 36.65, 38.63, 40.31, 42.16, 43.78, 44.98, 47.08,
2166                49.09, 50.78, 52.15};
2167
2168
2169        private static final double[] tableZtoP={
2170                1.0, 9.20e-01,8.41e-01,7.64e-01,6.89e-01,6.17e-01,5.49e-01,4.84e-01,4.24e-01,3.68e-01,
2171                3.17e-01,2.71e-01,2.30e-01,1.94e-01,1.62e-01,1.34e-01,1.10e-01,8.91e-02,7.19e-02,5.74e-02,
2172                4.55e-02,3.57e-02,2.78e-02,2.14e-02,1.64e-02,1.24e-02,9.32e-03,6.93e-03,5.11e-03,3.73e-03,
2173                2.70e-03,1.94e-03,1.37e-03,9.67e-04,6.74e-04,4.65e-04,3.18e-04,2.16e-04,1.45e-04,9.62e-05,
2174                6.33e-05,4.13e-05,2.67e-05,1.71e-05,1.08e-05,6.80e-06,4.22e-06,2.60e-06,1.59e-06,9.58e-07,
2175                5.73e-07,3.40e-07,1.99e-07,1.16e-07,6.66e-08,3.80e-08,2.14e-08,1.20e-08,6.63e-09,3.64e-09,
2176                1.97e-09,1.06e-09,5.65e-10,2.98e-10,1.55e-10,8.03e-11,4.11e-11,2.08e-11,1.05e-11,5.20e-12,
2177                2.56e-12,1.25e-12,6.02e-13,2.88e-13,1.36e-13,6.38e-14,2.96e-14,1.36e-14,6.19e-15,2.79e-15,
2178                1.24e-15,5.50e-16,2.40e-16,1.04e-16,4.46e-17,1.90e-17,7.97e-18,3.32e-18,1.37e-18,5.58e-19,
2179                2.26e-19,9.03e-20,3.58e-20,1.40e-20,5.46e-21,2.10e-21,7.99e-22,3.02e-22,1.13e-22,4.16e-23,
2180                1.52e-23,5.52e-24,1.98e-24,7.05e-25,2.48e-25,8.64e-26,2.98e-26,1.02e-26,3.44e-27,1.15e-27,
2181                3.82e-28,1.25e-28,4.08e-29,1.31e-29,4.18e-30,1.32e-30,4.12e-31,1.27e-31,3.90e-32,1.18e-32,
2182                3.55e-33,1.06e-33,3.11e-34,9.06e-35,2.61e-35,7.47e-36,2.11e-36,5.91e-37,1.64e-37,4.50e-38,
2183                1.22e-38,3.29e-39,8.77e-40,2.31e-40,6.05e-41,1.56e-41,4.00e-42,1.02e-42,2.55e-43,6.33e-44,
2184                1.56e-44,3.80e-45,9.16e-46,2.19e-46,5.17e-47,1.21e-47,2.81e-48,6.45e-49,1.46e-49,3.30e-50};
2185        private static final double[] tablePtoZ={
2186                0.00,0.73,1.24,1.64,1.99,2.30,2.58,2.83,3.07,3.29,
2187                3.50,3.70,3.89,4.07,4.25,4.42,4.58,4.74,4.89,5.04,
2188                5.19,5.33,5.46,5.60,5.73,5.86,5.99,6.11,6.23,6.35,
2189                6.47,6.58,6.70,6.81,6.92,7.02,7.13,7.24,7.34,7.44,
2190                7.54,7.64,7.74,7.84,7.93,8.03,8.12,8.21,8.30,8.40,
2191                8.49,8.57,8.66,8.75,8.84,8.92,9.01,9.09,9.17,9.25,
2192                9.34,9.42,9.50,9.58,9.66,9.73,9.81,9.89,9.97,10.04,
2193                10.12,10.19,10.27,10.34,10.41,10.49,10.56,10.63,10.70,10.77,
2194                10.84,10.91,10.98,11.05,11.12,11.19,11.26,11.32,11.39,11.46,
2195                11.52,11.59,11.66,11.72,11.79,11.85,11.91,11.98,12.04,12.10,
2196                12.17,12.23,12.29,12.35,12.42,12.48,12.54,12.60,12.66,12.72,
2197                12.78,12.84,12.90,12.96,13.02,13.07,13.13,13.19,13.25,13.31,
2198                13.36,13.42,13.48,13.53,13.59,13.65,13.70,13.76,13.81,13.87,
2199                13.92,13.98,14.03,14.09,14.14,14.19,14.25,14.30,14.35,14.41,
2200                14.46,14.51,14.57,14.62,14.67,14.72,14.77,14.83,14.88,14.93};
2201
2202        /** copy data from this class into AFPChain container object.
2203         *
2204         * @param afpChain
2205         * @param ca1
2206         * @param ca2
2207         */
2208        public void convertAfpChain(AFPChain afpChain, Atom[] ca1, Atom[] ca2) {
2209
2210                afpChain.setBlockNum(1);
2211                //afpChain.setAlignScore(z);
2212                Matrix[] m ;
2213
2214                if ( r != null ) {
2215                        m = new Matrix[1];
2216                        m[0] = r;
2217                } else  {
2218                        m = new Matrix[0];
2219                }
2220
2221                Atom[] as ;
2222                if ( t != null) {
2223                        as = new Atom[1];
2224                        as[0] = t;
2225                } else {
2226                        as = new Atom[0];
2227                }
2228
2229                afpChain.setBlockRotationMatrix(m);
2230                afpChain.setBlockShiftVector(as);
2231
2232                int nse1 = ca1.length;
2233                int nse2 = ca2.length;
2234                //System.out.println("dist1 :" + dist1.length + " " + dist2.length);
2235
2236                if ( nse1 > 0 && dist1.length > 0 )
2237                        afpChain.setDisTable1(new Matrix(dist1));
2238                else
2239                        afpChain.setDisTable1 (Matrix.identity(3, 3));
2240                if ( nse2 > 0 && dist2.length > 0 )
2241                        afpChain.setDisTable2(new Matrix(dist2));
2242                else
2243                        afpChain.setDisTable2(Matrix.identity(3, 3));
2244
2245
2246                char[] alnseq1 = new char[nse1+nse2+1];
2247                char[] alnseq2 = new char[nse1+nse2+1] ;
2248                char[] alnsymb = new char[nse1+nse2+1];
2249
2250                int[][][] optAln = new int[1][2][nAtom];
2251                afpChain.setOptAln(optAln);
2252
2253                int pos = 0;
2254                int nrIdent = 0;
2255                int nrSim   = 0;
2256                for(int ia=0; ia<alignmentPositionOrLength; ia++) {
2257
2258                        // no gap
2259                        if(align_se1[ia]!=-1 && align_se2[ia]!=-1) {
2260                                //System.out.println("ia " + ia + " pos " + pos + " "  + align_se1[ia] + " " + align_se2[ia]);
2261                                optAln[0][0][pos] = align_se1[ia];
2262                                optAln[0][1][pos] = align_se2[ia];
2263
2264                                char l1 = getOneLetter(ca1[align_se1[ia]].getGroup());
2265                                char l2 = getOneLetter(ca2[align_se2[ia]].getGroup());
2266
2267                                alnseq1[ia] = Character.toUpperCase(l1);
2268                                alnseq2[ia] = Character.toUpperCase(l2);
2269                                alnsymb[ia] = ' ';
2270                                if ( l1 == l2) {
2271                                        nrIdent++;
2272                                        nrSim++;
2273                                        alnsymb[ia] = '|';
2274                                } else if ( AFPAlignmentDisplay.aaScore(l1, l2) > 0){
2275                                        nrSim++;
2276                                        alnsymb[ia] = ':';
2277                                }
2278
2279                                pos++;
2280
2281                        } else {
2282                                // there is a gap at this position
2283                                alnsymb[ia] = ' ';
2284                                if (align_se1[ia] == -1 ) {
2285                                        alnseq1[ia] = '-';
2286                                } else {
2287                                        char l1 = getOneLetter(ca1[align_se1[ia]].getGroup());
2288                                        alnseq1[ia] = Character.toUpperCase(l1);
2289                                }
2290                                if ( align_se2[ia] == -1 ) {
2291                                        alnseq2[ia] = '-';
2292                                } else {
2293                                        char l2 = getOneLetter(ca2[align_se2[ia]].getGroup());
2294                                        alnseq2[ia] = Character.toUpperCase(l2);
2295                                }
2296
2297                        }
2298                }
2299
2300
2301                afpChain.setAlnseq1(alnseq1);
2302                afpChain.setAlnseq2(alnseq2);
2303                afpChain.setAlnsymb(alnsymb);
2304
2305
2306                // CE uses the aligned pairs as reference not the whole alignment including gaps...
2307                if ( pos > 0) {
2308                        afpChain.setIdentity(nrIdent*1.0/pos);
2309                        afpChain.setSimilarity(nrSim*1.0/pos);
2310                } else {
2311                        afpChain.setIdentity(0);
2312                        afpChain.setSimilarity(0);
2313                }
2314
2315                //AFPAlignmentDisplay.getAlign( afpChain,ca1,ca2);
2316
2317        }
2318
2319        public int getnAtom() {
2320                return nAtom;
2321        }
2322
2323
2324
2325        public void setnAtom(int nAtom) {
2326                this.nAtom = nAtom;
2327        }
2328
2329
2330
2331        public int getLcmp() {
2332                return alignmentPositionOrLength;
2333        }
2334
2335
2336
2337        public void setLcmp(int lcmp) {
2338                this.alignmentPositionOrLength = lcmp;
2339        }
2340
2341
2342
2343        public int[] getAlign_se1() {
2344                return align_se1;
2345        }
2346
2347
2348
2349        public void setAlign_se1(int[] alignSe1) {
2350                align_se1 = alignSe1;
2351        }
2352
2353
2354
2355        public int[] getAlign_se2() {
2356                return align_se2;
2357        }
2358
2359
2360
2361        public void setAlign_se2(int[] alignSe2) {
2362                align_se2 = alignSe2;
2363        }
2364
2365        /**
2366         * Caution: this matrix is overwriten with very different data at several
2367         * points in the alignment algorithm. After
2368         * {@link #initSumOfDistances(int, int, int, int, Atom[], Atom[]) initSumOfDistances}
2369         * is run, this will hold the distance matrix between AFPs.
2370         * @return mat
2371         */
2372        public double[][] getMatMatrix() {
2373                return mat;
2374        }
2375
2376        public void setMatMatrix(double[][] matrix){
2377                mat = matrix;
2378        }
2379
2380        /**
2381         * Gets the rotation matrix from the last call to
2382         * {@link #calc_rmsd(Atom[], Atom[], int, boolean, boolean) calc_rmsd}.
2383         * @return The rotatiokn matrix
2384         */
2385        public Matrix getRotationMatrix() {
2386                return r;
2387        }
2388
2389        /**
2390         * Gets the shift from the last call to
2391         * {@link #calc_rmsd(Atom[], Atom[], int, boolean, boolean) calc_rmsd}.
2392         * @return The shift
2393         */
2394        public Atom getShift() {
2395                return t;
2396        }
2397
2398        public double[][] getDist1() {
2399                return dist1;
2400        }
2401
2402        public void setDist1(double[][] dist1) {
2403                this.dist1 = dist1;
2404        }
2405
2406        public double[][] getDist2() {
2407                return dist2;
2408        }
2409
2410        public void setDist2(double[][] dist2) {
2411                this.dist2 = dist2;
2412        }
2413
2414
2415}