001/* 002 * BioJava development code 003 * 004 * This code may be freely distributed and modified under the 005 * terms of the GNU Lesser General Public Licence. This should 006 * be distributed with the code. If you do not have a copy, 007 * see: 008 * 009 * http://www.gnu.org/copyleft/lesser.html 010 * 011 * Copyright for this code is held jointly by the individual 012 * authors. These should be listed in @author doc comments. 013 * 014 * For more information on the BioJava project and its aims, 015 * or to join the biojava-l mailing list, visit the home page 016 * at: 017 * 018 * http://www.biojava.org/ 019 * 020 */ 021package org.biojava.nbio.survival.cox.stats; 022 023/** 024 * 025 * @author Scooter Willis 026 */ 027public class Cholesky2 { 028 029 /* $Id: cholesky2.c 11357 2009-09-04 15:22:46Z therneau $ 030 ** 031 ** subroutine to do Cholesky decompostion on a matrix: C = FDF' 032 ** where F is lower triangular with 1's on the diagonal, and D is diagonal 033 ** 034 ** arguments are: 035 ** n the size of the matrix to be factored 036 ** **matrix a ragged array containing an n by n submatrix to be factored 037 ** toler the threshold value for detecting "singularity" 038 ** 039 ** The factorization is returned in the lower triangle, D occupies the 040 ** diagonal and the upper triangle is left undisturbed. 041 ** The lower triangle need not be filled in at the start. 042 ** 043 ** Return value: the rank of the matrix (non-negative definite), or -rank 044 ** it not SPD or NND 045 ** 046 ** If a column is deemed to be redundant, then that diagonal is set to zero. 047 ** 048 ** Terry Therneau 049 */ 050 /** 051 * 052 * @param matrix 053 * @param n 054 * @param toler 055 * @return 056 */ 057 public static int process(double[][] matrix, int n, double toler) { 058 double temp; 059 int i, j, k; 060 double eps, pivot; 061 int rank; 062 int nonneg; 063 064 nonneg = 1; 065 eps = 0; 066 for (i = 0; i < n; i++) { 067 if (matrix[i][i] > eps) { 068 eps = matrix[i][i]; 069 } 070 for (j = (i + 1); j < n; j++) { 071 matrix[j][i] = matrix[i][j]; 072 } 073 } 074 eps *= toler; 075 076 rank = 0; 077 for (i = 0; i < n; i++) { 078 pivot = matrix[i][i]; 079 if (pivot < eps) { 080 matrix[i][i] = 0; 081 if (pivot < -8 * eps) { 082 nonneg = -1; 083 } 084 } else { 085 rank++; 086 for (j = (i + 1); j < n; j++) { 087 temp = matrix[j][i] / pivot; 088 matrix[j][i] = temp; 089 matrix[j][j] -= temp * temp * pivot; 090 for (k = (j + 1); k < n; k++) { 091 matrix[k][j] -= temp * matrix[k][i]; 092 } 093 } 094 } 095 } 096 return (rank * nonneg); 097 } 098 099}