public static class SparseVector.NormalizingKernel extends Object implements SVMKernel, Serializable
| Constructor and Description | 
|---|
| SparseVector.NormalizingKernel(List vectors)Generate a normalizing kernel defined by the SparseVectors in vectors. | 
| SparseVector.NormalizingKernel(SparseVector s)Generate a normalizing kernel with the normalizing vector s. | 
| Modifier and Type | Method and Description | 
|---|---|
| double | evaluate(Object o1,
                Object o2)Evaluate the kernel function between two SparseVectors. | 
| SparseVector | getNormalizingVector()Retrive the current normalizing vector. | 
| void | setNormalizingVector(SparseVector nv)Set the normalizing vector. | 
| String | toString() | 
public SparseVector.NormalizingKernel(SparseVector s)
s - the SparseVector to normalize bypublic SparseVector.NormalizingKernel(List vectors)
It will set up a normalizing vector that has weight that will scale each element so that the average score is 1.
public SparseVector getNormalizingVector()
public void setNormalizingVector(SparseVector nv)
nv - the new normalizing vectorpublic double evaluate(Object o1, Object o2)
 This function is equivalent to:
 
 k(a, b) = sum_i ( a_i * b_i * nv_i )
 
 where nv_i is the value of the normalizing vector at index i. This can
 be thought of as scaling each vector at index i by
 sqrt(nv_i).
Copyright © 2014 BioJava. All rights reserved.